Skip to main content
Log in

Determination of Parameters for Johnson-Cook Dynamic Constitutive and Damage Models for E250 Structural Steel and Experimental Validations

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Structural steel (E250 grade) is used in several engineering applications involving loadings from quasi-static to high strain rates (blast discs, explosion vents, etc.), which introduce large deformation, strain and strain rate hardening, thermal softening, and damage to the material. The material’s dynamic constitutive behaviour can be aptly modelled by a visco-plasticity-based Johnson–Cook (J–C) strength model and damage initiation and complete failure by the J–C’s damage model. In the latter, damage initiation is modelled through continuum damage mechanics and propagation by the fracture mechanics. This paper focuses on the determination of 10 different J–C’s dynamic constitutive and damage model parameters for E250 structural steel by conducting several experiments involving tensile tests at different strain rates (0.0003–1.0 s-1), stress triaxialities (0.33–0.95), temperatures (30–800 °C), and SHPB experiments (at 3000 and 8000 s-1). It explains the processes and step-by-step procedures for extracting the model parameters from the experimental results. A different approach is followed in arriving at fracture strain for extracting damage model parameters to suit fracture mechanic-based damage evolution available in the existing FEA codes. The constitutive and damage model parameters thus determined are validated through numerical simulations and comparison with three independent experiments viz. i) experiment of a plain tensile specimen, ii) tensile experiment of a notched specimen, and iii) hydrostatic burst experiment of a flat burst disc. The responses and failure patterns from numerical simulations agreed very well in all three experiments, thereby validating the determined model parameters. The determined model parameters can be utilised directly in the commercially available nonlinear explicit FEA codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

All the data required to reproduce these findings are provided in the manuscript as graphs instead of raw data. This is also used as part of an ongoing study by the authors.

Abbreviations

A :

J–C parameter representing yield stress (MPa)

A s :

Cross-sectional area of SHPB specimen (mm2)

A t :

Cross-sectional area of the incident and transmitter bars (mm2)

A 0 :

Initial cross-sectional area of the tensile specimen (mm2)

A f :

Cross-sectional area of the tensile specimen after the experiment (mm2)

B :

Strain hardening coefficient (MPa)

C :

Strain rate coefficient

c 0 :

Fundamental longitudinal velocity of the elastic stress wave (m/s)

D i :

Damage initiation variable

D :

Damage propagation variable

D 1 , D 2 , D 3 :

Stress triaxiality dependent fracture strain parameters

D 4 :

Strain rate dependent fracture strain parameter

D 5 :

Temperature dependent fracture strain parameter

E :

Young’s modulus (MPa)

G f :

Fracture energy (N/mm)

L s :

The thickness of the specimen in the SHPB experiment (mm)

m :

Thermal softening exponent

n :

Strain hardening exponent

P :

Equivalent force in the incident and transmitted bar (N)

P 1, P 2 :

Forces on the left and right end of the specimen in SHPB experiment (N)

\(\dot{P}\) :

Incident pressure loading rate in burst experiment (MPa/s)

P b :

Burst pressure (MPa)

T :

Temperature in material (°C)

\({T}^{*}\) :

Homologous temperature (°C)

\({T}_{0}\) :

Reference temperature (°C)

\({T}_{\mathrm{m}}\) :

Melting temperature of the material (°C)

t :

Time interval for the stress wave propagation through an element (s)

t d :

Natural time period (s)

u 1, u 2 :

Displacements at the left and right end of the specimen in the SHPB experiment

\({u}^{\mathrm{pl}}\) :

Plastic displacement

\({u}_{\mathrm{f}}^{\mathrm{pl}}\) :

Plastic displacement at failure

w l :

Crack tip opening displacement (mm)

x, y :

Horizontal and vertical coordinate axes, respectively

σ :

True stress/von-Mises tensile flow stress (MPa)

\({\sigma }_{\mathrm{m}}\) :

Average of the three normal stresses, i.e. mean stress (MPa)

\(\tilde{\sigma }\) :

Von-Mises equivalent stress (MPa)

σ * :

Dimensionless pressure, i.e. stress ratio or stress triaxiality

\({\sigma }_{0}\) :

Stress at the onset of damage (MPa)

\({\sigma }_{\mathrm{t}}\) :

Tensile strength of the material (MPa)

\({\sigma }_{\mathrm{y}}\) :

Dynamic yield stress (MPa)

\({\sigma }_{\mathrm{D}}\) :

Stress at damaged state (MPa)

\(\varepsilon\) :

True strain/plastic strain

\({\varepsilon }_{0}\) :

Equivalent plastic strain at the onset of damage

\(\dot{\varepsilon }\) :

Strain rate (s−1)

\({\dot{\varepsilon }}_{0}\) :

Reference strain rate (s−1)

\({\dot{\varepsilon }}^{*}\) :

Dimensionless normalised plastic strain rate

\({\dot{\varepsilon }}_{\mathrm{s}}\) :

Strain rate in SHPB specimen (s−1)

\({\varepsilon }_{\mathrm{f}}\) :

Fracture strain

\({\varepsilon }_{\mathrm{i}}\) :

Incident strain pulse

\({\varepsilon }_{\mathrm{r}}\) :

Reflected strain pulse

\({\varepsilon }_{\mathrm{s}}\) :

Strain in SHPB specimen

\({\varepsilon }_{\mathrm{t}}\) :

Transmitted strain pulse

\(\Delta \varepsilon\) :

Incremental plastic strain

\({\omega }_{\mathrm{n}}\) :

Fundamental natural frequency (Hz)

ρ :

Density of the material (kg/m3)

References

  1. C.L. Rao, V. Narayanamurthy, and K.R.Y. Simha, Applied Impact Mechanics, Wiley, Hoboken, 2016. https://doi.org/10.1002/9781119241829

    Book  Google Scholar 

  2. G.R. Johnson and W.H. Cook, A Constitutive Model and Data from Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In: Proceedings: Seventh International Symposium on Ballistics, Netherlands. 541–547 (1983)

  3. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  4. K. Vedantam, D. Bajaj, N.S. Brar, and S. Hill, Johnson - Cook Strength Models for Mild and DP 590 Steels, AIP Conf. Proc., 2006, 845(1), p 775–778. https://doi.org/10.1063/1.2263437

    Article  CAS  Google Scholar 

  5. Z. Xu and F. Huang, Plastic Behavior and Constitutive Modelling of Armor Steel Over Wide Temperature and Strain Rate Ranges, Acta Mech. Solida Sin., 2012, 25(6), p 598–608. https://doi.org/10.1016/S0894-9166(12)60055-X

    Article  Google Scholar 

  6. A. Banerjee, S. Dhar, S. Acharyya, D. Datta, and N. Nayak, Determination of Johnson Cook Material and Failure Model Constants and Numerical Modelling of Charpy Impact Test Of Armour Steel, Mat. Sci. Eng. A, 2015, 640, p 200–209. https://doi.org/10.1016/j.msea.2015.05.073

    Article  CAS  Google Scholar 

  7. H.K. Farahani, M. Ketabchi, and S. Zangeneh, Determination of Johnson–Cook Plasticity Model Parameters for Inconel 718, J. Mat. Eng. Perform., 2017, 26(11), p 5284–5293. https://doi.org/10.1007/s11665-017-2990-2

    Article  CAS  Google Scholar 

  8. M. Murugesan and D.W. Jung, Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications, Materials., 2019, 12(4), p 609. https://doi.org/10.3390/ma12040609

    Article  CAS  Google Scholar 

  9. G.H. Majzoobi and F.R. Dehgolan, Determination of the Constants of Damage Models, Proced. Eng., 2011, 10, p 764–773. https://doi.org/10.1016/j.proeng.2011.04.127

    Article  Google Scholar 

  10. B. Bal, K.K. Karaveli, B. Cetin, and B. Gumus, The Precise Determination of the Johnson–Cook Material and Damage Model Parameters and Mechanical Properties of an Aluminum 7068–T651 Alloy, J. Eng. Mat. Tech., 2019, 141(4), p 141001. https://doi.org/10.1115/1.4042870

    Article  CAS  Google Scholar 

  11. T. Børvik, M. Langseth, O.S. Hopperstad, and K.A. Malo, Ballistic Penetration of Steel Plates, Int. J. Imp. Engg., 1999, 22(9–10), p 855–886. https://doi.org/10.1016/S0734-743X(99)00011-1

    Article  Google Scholar 

  12. J. Lemaitre, A Course on Damage Mechanics, Springer, Berlin Heidelberg, 2012.

    Google Scholar 

  13. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, United Kingdom, 1996.

    Google Scholar 

  14. V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior. In: 31st International Conference on Distributed Computing Systems Workshops. 166-171 (2011) doi: https://doi.org/10.1109/ICDCSW.2011.20.

  15. Abaqus User Manual, V6.14: Dassault Systèmes Simulia Corporation, France (2014)

  16. A. Hillerborg, M. Modéer, and P.E. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. Concr. Res., 1976, 6(6), p 773–781. https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  17. W.E. Baker, P.A. Cox, J.J. Kulesz, R.A. Strehlow, and P.S. Westine, Explosion Hazards and Evaluation, Elsevier Science, Netherlands, 2012.

    Google Scholar 

Download references

Acknowledgments

The authors thank the support provided by Mr. Swati Kiran, Research Scholar at IIT Hyderabad and engineers at our Laboratory in conducting various experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Narayanamurthy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, K., Narayanamurthy, V., Khaderi, S.N. et al. Determination of Parameters for Johnson-Cook Dynamic Constitutive and Damage Models for E250 Structural Steel and Experimental Validations. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08733-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08733-4

Keywords

Navigation