Skip to main content
Log in

Colorimetric Determination of Pb2+ in Perfect Aqueous Solution Using Carminic Acid as a Selective Chemosensor

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The commercially available natural organic dye, carminic acid (CA), an anthraquinone derivative bearing hydroxyl and carboxyl groups as recognition sites was found to be a colorimetric probe for Pb2+ in perfect aqueous solution under neutral conditions with specific selectivity and high sensitivity. Upon addition of Pb2+, the absorption maximum of CA showed a large red shift, and the resulted color change from red to purple could be easily identified even by the naked eye. The chemical stoichiometric ratio between CA and Pb2+ was determined to be 1:2 through Job plot, Pb2+ titration, and kinetic experiments. Moreover, other environmental relevant metal ions induced no or minimal spectral and color changes. The reversibility of Pb2+ to CA with EDTA even through several cycles was established for practical applications. The results indicated that CA can be a good candidate for simple, convenient and reversible colorimetric detection of Pb2+ in aqueous solution even though it was hard to be applied to determine Pb2+ on the water testing by US EPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  PubMed  Google Scholar 

  2. Meadows-Oliver M (2012) Environmental toxicants: lead and mercury. J Pediatr Health Care 26:213–215

    Article  PubMed  Google Scholar 

  3. Sobin C, Parisi N, Schaub T, Gutierrez M, Ortega AX (2011) δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 and peptide transporter 2*2 haplotype may differentially mediate lead exposure in male children. Arch Environ Contam Toxicol 61:521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mudipalli A (2007) Lead hepatotoxicity & potential health effects. Indian J Med Res 126:518–527

    CAS  PubMed  Google Scholar 

  5. Zhu J, Yu UQ, Li JJ, Zhao JW (2016) Colorimetric detection of lead(II) ions based on accelerating surface etching of gold nanorods to nanospheres: the effect of sodium thiosulfate. RSC Adv 6:25611–25619

    Article  CAS  Google Scholar 

  6. Liu HW, Jiang SJ, Liu SH (1999) Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry. Spectrochim Acta B 54:1367–1375

    Article  Google Scholar 

  7. Feldman BJ, Osterloh JD, Hata BH, D’Alessandro A (1994) Determination of lead in blood by square wave anodic stripping voltammetry at a carbon disk ultramicroelectrode. Anal Chem 66:1983–1987

    Article  CAS  PubMed  Google Scholar 

  8. Elfering H, Andersson JT, Poll JT (1998) Determination of organic lead in soils and waters by hydride generation inductively coupled plasma atomic emission spectrometry. Analyst 123:669–674

    Article  CAS  Google Scholar 

  9. Liu Y, Liu Z, Wang Y, Dai J, Gao J, Xie J, Yan Y (2011) A surface ion-imprinted mesoporous sorbent for separation and determination of Pb(II) ion by flame atomic absorption spectrometry. Microchim Acta 172:309–317

    Article  CAS  Google Scholar 

  10. He Q, Miller EW, Wong AP, Chang CJ (2006) A selective fluorescent sensor for detecting lead in living cells. J Am Chem Soc 128:9316–9317

    Article  CAS  PubMed  Google Scholar 

  11. Ranyuk E, Douaihy CM, Bessmertnykh A, Denat F, Averin A, Beletskaya I, Guilard R (2009) Diaminoanthraquinone-linked polyazamacrocycles: efficient and simple colorimetric sensor for lead ion in aqueous solution. Org Lett 11:987–990

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267

    Article  CAS  Google Scholar 

  14. Mazumdar D, Liu J, Lu G, Zhou J, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46:1416–1418

    Article  CAS  Google Scholar 

  15. Gil ES, Oliveira SC, Oliveira-Brett AM (2012) Hydroxyanthraquinones carminic acid and chrysazin anodic oxidation. Electroanalysis 24:2079–2084

    Article  CAS  Google Scholar 

  16. Sun W, Han Y, Jiao K (2006) Voltammetric albumin quantification based on its interaction with carminic acid. J Serb Chem Soc 71:385–396

    Article  CAS  Google Scholar 

  17. Comanici R, Gabel B, Gustavsson T, Markovitsi D, Cornaggia C, Pommeret S, Rusu C, Kryschi C (2006) Femtosecond spectroscopic study of carminic acid–DNA interactions. Chem Phys 325:509–518

    Article  CAS  Google Scholar 

  18. Göktürk S (2005) Effect of hydrophobicity on micellar binding of carminic acid. J Photochem Photobiol A 169:115–121

    Article  Google Scholar 

  19. Nevado JJB, Cabanillas CG, Salcedo AMC (1995) Simultaneous spectrophotometric determination of three food dyes by using the first derivative of ratio spectra. Talanta 42:2043–2051

    Article  CAS  PubMed  Google Scholar 

  20. Cabrera RB, Fernandez-Lahore HM (2007) Primary recovery of acid food colorant. Int J Food Sci Technol 42:1315–1326

    Article  CAS  Google Scholar 

  21. Manzoori JL, Sorouraddin MH, Amjadi M (2000) Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide. Talanta 53:61–68

    Article  CAS  PubMed  Google Scholar 

  22. Manzoori JL, Sorouraddin MH, Haji-Shabani AM (1998) Spectrophotometric determination of nitrite based on its catalytic effect on the oxidation of carminic acid by bromate. Talanta 46:1379–1386

    Article  CAS  PubMed  Google Scholar 

  23. Callicoat D, Wolszon JD (1959) Carminic acid procedure for determination of boron. Anal Chem 31:1434–1437

    Article  CAS  Google Scholar 

  24. Kaur P, Gupta VK (1989) Spectrophotometric determination of beryllium with carminic acid. Fresenius Z Anal Chem 334:447–449

    Article  CAS  Google Scholar 

  25. Wanga F, Huanga W, Li K, Li A, Gao W, Tang B (2011) Study on the fluorescence enhancement in lanthanum(III)–carminic acid–cetyltrimethylammonium bromide system and its analytical application. Spectrochim Acta Part A 79:1946–1951

    Article  Google Scholar 

  26. López-Martinez L, Guzman-Mar JL, Lopez-de Alba PL (2001) Simultaneous determination of uranium(VI) and thorium(IV) ions with carminic acid by bivariate calibration. J Radioanal Nucl Chem 247:413–417

    Article  Google Scholar 

  27. Job P (1928) Formation and stability of inorganic complexes in solution. Ann Chim Puris 9:113–203

    CAS  Google Scholar 

  28. Irving HMNH, Freiser H, West TS (1978) IUPAC compendium of analytical nomenclature, definitive rules. Pergamon Press, Oxford

    Google Scholar 

  29. Benesi AH, Hildebrand HJ (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  30. Hossain MD, Pandey RK, Rana U, Higuchi M (2015) Nano molar detection of cd(II) ions by luminescent metallo-supramolecular polymer formation. J Mater Chem C 3:12186–12191

    Article  Google Scholar 

  31. Favaro G, Miliani C, Romani A, Vagnini M (2002) Role of protolytic interactions in photo-aging processes of carminic acid and carminic lake in solution and painted layers. J Chem Soc Perkin Trans 2:192–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamaki, M., Aikawa, S. & Fukushima, Y. Colorimetric Determination of Pb2+ in Perfect Aqueous Solution Using Carminic Acid as a Selective Chemosensor. J Fluoresc 27, 1929–1935 (2017). https://doi.org/10.1007/s10895-017-2131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2131-1

Keywords

Navigation