Skip to main content

Advertisement

Log in

Self-Tuning Time-Energy Optimization for the Trajectory Planning of a Wheeled Mobile Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this work a method for trajectory planning based on time-energy optimization of a nonholonomic wheeled mobile robot is proposed. The method utilizes a nonlinear variable change that transforms the nonlinear optimization problem into a discrete second order cone programming that can be solved by convex optimization tools. The formulation of the multiobjective function has two components: the total energy and the traversal time that is weighted by a parameter named penalty coefficient. With the use of the penalty coefficient one can establish a trade-off between the optimization of the total energy and the traversal time. The relation between both objectives draws a Pareto Front in the criterion space parameterized by the penalty coefficient. The rationale of this paper is to assume that the Pareto curve is an exponential function, and to propose an algorithm to estimate its parameters. Using this exponential function it is possible to estimate the Knee Point that is an optimal solution that balances time and energy equally. This systematic approach might be understood as a self-tuning algorithm that estimate the penalty coefficient for the generation of optimal voltage signals. Numerical results illustrate the feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S., Sun D.: Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE Trans. Mechatron. 19(2), 401–411 (2014)

    Article  Google Scholar 

  2. Kim, H., Kim, B.K.: Minimum-Energy Translational Trajectory Plan- Ning for Battery-Powered Three-Wheeled Omni-Directional Mobile Robots. In: Proceedings IEEE International Conference Control, Autom., Robot. Vis., 1730–1735 (2008)

  3. Mei, Y., Lu, Y., Lee, C., Hu, Y.: Energy-Efficient Mobile Robot Exploration. In: IEEE International Conference Robot. Autom., 505–5011 (2006)

  4. Hsu, D., Kindel, R., Latombe, J., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Rob. Res. 21(3), 233–255 (2002)

    Article  MATH  Google Scholar 

  5. Pham, Q., CAron, S., Nakamura, Y.: Kinodynamic Planning in the Configuration Space via Velocity Interval Propagation. In: Robotics: Science and Systems (2006)

  6. LaValle, S.: Planning Algorithms. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  7. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-Optimal Control of robotic manipulators along specified paths. Int. J. Robot. Res. 4, 3–17 (1985)

    Article  Google Scholar 

  8. Pfeiffer, F., Johanni, R.: A concept for manipulator trajectory planning. IEEE J. Robot. Autom. 3(2), 115–123 (1987)

    Article  Google Scholar 

  9. Shiller, Z.: Time-Energy Optimal control of articulated systems with geometric path constraints. J. Dyn. Syst. Meas. Control. 118(1), 139–143 (1996)

    Article  MATH  Google Scholar 

  10. Constantinescu, D., Croft, E.A.: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J. Robot. Syst. 17(5), 233–249 (2000)

    Article  MATH  Google Scholar 

  11. Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl, M.: Time-energy optimal path tracking for robots: a numerically efficient optimization approach. In: Proceedings of the 10th IEEE International Workshop on Advanced Motion Control, 727–732 (2008)

  12. Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl, M.: Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans. Autom. Control 54(10), 2318–2327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Los Angeles (2004)

    Book  MATH  Google Scholar 

  14. Ardeshiri, T., Norrlöf, M., Löfberg, J., Hansson, A.: Convex optimization approach for Time-Optimal path tracking of robots with speed dependent constraints. In: Proceedings of the 18th IFAC World Congress, 44(1), 14648–14653 (2011)

  15. Debrouwere, F., Van Loock, W., Pipeleers, G., Dinh, Q.T., Diehl, M., De Schutter, J., Swevers, J.: Time-Optimal Path following for robots with convex - concave constraints using sequential convex programming. IEEE Trans. Robot. 29(6), 1485–1495 (2013)

    Article  Google Scholar 

  16. Zhang, Q., Li, S.-R., Gao, X.-S.: Practical smooth minimum time trajectory planning for path following robotic manipulators. In: Proceedings of the 2013 American Control Conference, 2778–2783 (2013)

  17. Lipp, T., Boyd, S.: Minimum-time speed optimisation over a fixed path International Journal of Control, 87(6), 1297–1311 (2014)

  18. Reynoso-Mora, P., Chen, W., Tomizuka, M.: A convex relaxation for the time-optimal trajectory planning of robotic manipulators along predetermined geometric paths. Optimal Control Appl. Methods 37(6), 1263–1281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Siciliano, B., Khatib, O. (eds.): Springer handbook of robotics. Springer, Berlin (2008)

  20. Serralheiro, W., Maruyama, N.: Time-Energy Optimal trajectory planning over a fixed path for a wheeled mobile robot. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, 239–246 (2017)

  21. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grant, M., Boyd, S.: CVX: MATLAB Software for Disciplined Convex Programming, version 2.1. http://cvxr.com/cvx,. Accessed 12 May 2017 (2014)

  23. Arora, J.S.: Introduction to optimum design. Elsevier, Oxford (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werther Serralheiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serralheiro, W., Maruyama, N. & Saggin, F. Self-Tuning Time-Energy Optimization for the Trajectory Planning of a Wheeled Mobile Robot. J Intell Robot Syst 95, 987–997 (2019). https://doi.org/10.1007/s10846-018-0922-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0922-5

Keywords

Navigation