Skip to main content

Path Planning and Trajectory Planning Algorithms: A General Overview

  • Chapter
  • First Online:
Motion and Operation Planning of Robotic Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 29))

Abstract

Path planning and trajectory planning are crucial issues in the field of Robotics and, more generally, in the field of Automation. Indeed, the trend for robots and automatic machines is to operate at increasingly high speed, in order to achieve shorter production times. The high operating speed may hinder the accuracy and repeatability of the robot motion, since extreme performances are required from the actuators and the control system. Therefore, particular care should be put in generating a trajectory that could be executed at high speed, but at the same time harmless for the robot, in terms of avoiding excessive accelerations of the actuators and vibrations of the mechanical structure. Such a trajectory is defined as smooth. For such reasons, path planning and trajectory planning algorithms assume an increasing significance in robotics. Path planning algorithms generate a geometric path, from an initial to a final point, passing through pre-defined via-points, either in the joint space or in the operating space of the robot, while trajectory planning algorithms take a given geometric path and endow it with the time information. Trajectory planning algorithms are crucial in Robotics, because defining the times of passage at the via-points influences not only the kinematic properties of the motion, but also the dynamic ones. Namely, the inertial forces (and torques), to which the robot is subjected, depend on the accelerations along the trajectory, while the vibrations of its mechanical structure are basically determined by the values of the jerk (i.e. the derivative of the acceleration). Path planning algorithms are usually divided according to the methodologies used to generate the geometric path, namely:

  • roadmap techniques

  • cell decomposition algorithms

  • artificial potential methods.

The algorithms for trajectory planning are usually named by the function that is optimized, namely:

  • minimum time

  • minimum energy

  • minimum jerk.

Examples of hybrid algorithms, which optimize more than a single function, are also found in the scientific literature. In this chapter, the general problem of path planning and trajectory planning will be addressed, and an extended overview of the algorithms belonging to the categories mentioned above will be carried out, with references to the numerous contributions to this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amato NM, Wu Y (1996) A randomized roadmap method for path and manipulation planning. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 113–120

    Google Scholar 

  2. Balkan T (1998) A dynamic programming approach to optimal control of robotic manipulators. Mech Res Commun 25(2):225–230

    Article  MATH  Google Scholar 

  3. Bamdad M (2013) Time-energy optimal trajectory planning of cable-suspended manipulators. Cable-driven parallel robots. Springer, Berlin, pp 41–51

    Chapter  Google Scholar 

  4. Barnett E, Gosselin C (2013) Time-optimal trajectory planning of cable-driven parallel mechanisms for fully-specified paths with g1 discontinuities. In: ASME 2013 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers

    Google Scholar 

  5. Barraquand J, Latombe JC (1991) Robot motion planning: a distributed representation approach. Int J Robot Res 10(6):628–649

    Article  Google Scholar 

  6. Barre PJ, Bearee R, Borne P, Dumetz E (2005) Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J Intell Robot Syst 42(3):275–293

    Article  Google Scholar 

  7. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators along specified paths. Int J Robot Res 4(3):554–561

    Article  Google Scholar 

  8. Bobrow JE, Martin BJ, Sohl G, Wang EC, Kim J (2001) Optimal robot motion for physical criteria. J Robot Syst 18(12):785–795

    Article  MATH  Google Scholar 

  9. Boscariol P, Gasparetto A, Lanzutti A, Vidoni R, Zanotto V (2011) Experimental validation of minimum time-jerk algorithms for industrial robots. J Intell Robot Syst 64(2):197–219

    Article  Google Scholar 

  10. Boscariol P, Gasparetto A (2013) Model-based trajectory planning for flexible link mechanisms with bounded jerk. Robot Comput Integr Manuf 29(4):90–99

    Article  Google Scholar 

  11. Boscariol P, Gasparetto A, Vidoni R (2012) Jerk-continous trajectories for cyclic tasks. In: Proceedings of the ASME 2012 international design engineering technical conferences (IDETC), pp 1–10

    Google Scholar 

  12. Boscariol P, Gasparetto A, Vidoni R (2012) Planning continuous-jerk trajectories for industrial manipulators. In: Proceedings of the ESDA 2012 11th biennial conference on engineering system design and analysis, pp 1–10

    Google Scholar 

  13. Boscariol P, Gasparetto A, Vidoni R (2013) Robust trajectory planning for flexible robots. In: Proceedings of the 2013 ECCOMAS multibody dynamics conference, pp 293–294

    Google Scholar 

  14. Boscariol P, Gasparetto A, Vidoni R, Romano A (2013) A model-based trajectory planning approach for flexible-link mechanisms. In: Proceedings of the ICM 2013—IEEE international conference on mechatronics, pp 1–6

    Google Scholar 

  15. Canny J, Donald B (1988) Simplified voronoi diagrams. Discret Comput Geom 3(1):219–236

    Article  MATH  MathSciNet  Google Scholar 

  16. Cao B, Dodds GI (1994) Time-optimal and smooth constrained path planning for robot manipulators. In: Proceedings of the 1994 IEEE international conference on robotics and automation, pp 1853–1858

    Google Scholar 

  17. Carbone G, Ceccarelli M, Oliveira PJ, Saramago SF, Carvalho JCM (2008) An optimum path planning for Cassino parallel manipulator by using inverse dynamics. Robotica 26(2):229–239

    Article  Google Scholar 

  18. Caselli S, Reggiani M (2000) ERPP: an experience-based randomized path planner. In: Proceedings of the ICRA’00—IEEE international conference on robotics and automation, pp 1002–1008

    Google Scholar 

  19. Caselli S, Reggiani M, Rocchi R (2001) Heuristic methods for randomized path planning in potential fields. In: Proceedings of the 2001 IEEE international symposium on computational intelligence in robotics and automation, pp 426–431

    Google Scholar 

  20. Caselli S, Reggiani M, Sbravati R (2002) Parallel path planning with multiple evasion strategies. In: Proceedings of the ICRA’02—IEEE international conference on robotics and automation, pp 260–266

    Google Scholar 

  21. Chen CT, Liao TT (2011) A hybrid strategy for the time-and energy-efficient trajectory planning of parallel platform manipulators. Robot Comput-Integr Manuf 27(1):72–81

    Article  Google Scholar 

  22. Chen CT, Pham HV (2012) Trajectory planning in parallel kinematic manipulators using a constrained multi-objective evolutionary algorithm. Nonlinear Dyn 67(2):1669–1681

    Article  MathSciNet  Google Scholar 

  23. Choset HM, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge

    Google Scholar 

  24. Clark CM, Rock S (2001) Randomized motion planning for groups of nonholonomic robots. In: Proceedings of the 6th international symposium on artificial intelligence, robotics and automation in space, pp 1–8

    Google Scholar 

  25. Connolly CI, Burns JB (1990) Path planning using Laplace’s equation. In: Proceedings of the 1985 IEEE international conference on robotics and automation, pp 2102–2106

    Google Scholar 

  26. Constantinescu D (1998) Smooth time optimal trajectory planning for industrial manipulators. Ph.D. Thesis, The University of British Columbia, 1998

    Google Scholar 

  27. Constantinescu D, Croft EA (2000) Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J Robot Syst 17(5):233–249

    Article  MATH  Google Scholar 

  28. Croft EA, Benhabib B, Fenton RG (1995) Near time-optimal robot motion planning for on-line applications. J Robot Syst 12(8):553–567

    Article  MATH  Google Scholar 

  29. Donald BR, Xavier PG (1990) Provably good approximation algorithms for optimal kinodynamic planning for Cartesian robots and open chain manipulators. In: Proceedings of the sixth annual symposium on computational geometry, pp 290–300

    Google Scholar 

  30. Dong J, Ferreira PM, Stori JA (2007) Feed-rate optimization with jerk constraints for generating minimum-time trajectories. Int J Mach Tools Manuf 47(12–13):1941–1955

    Article  Google Scholar 

  31. Dongmei X, Daokui Q, Fang X (2006) Path constrained time-optimal robot control. In: Proceedings of the international conference on robotics and biomimetics, pp 1095–1100

    Google Scholar 

  32. Fiorini P, Shiller Z (1996) Time optimal trajectory planning in dynamic environments. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 1553–1558

    Google Scholar 

  33. Fraichard T (1999) Trajectory planning in a dynamic workspace: a state-time space approach. Adv Robot 13(1):74–94

    Article  Google Scholar 

  34. Fraichard T, Laugier C (1993) Dynamic trajectory planning, path-velocity decomposition and adjacent paths. In: Proceedings of the 1993 international joint conference on artificial intelligence, pp 1592–1597

    Google Scholar 

  35. Garrido S, Moreno L, Lima PU (2011) Robot formation motion planning using fast marching. Robot Auton Syst 59(9):675–683

    Article  Google Scholar 

  36. Gasparetto A, Zanotto V (2007) A new method for smooth trajectory planning of robot manipulators. Mech Mach Theor 42(4):455–471

    Article  MATH  MathSciNet  Google Scholar 

  37. Gasparetto A, Zanotto V (2008) A technique for time-jerk optimal planning of robot trajectories. Robot Comput-Integr Manuf 24(3):415–426

    Article  Google Scholar 

  38. Gasparetto A, Lanzutti A, Vidoni R, Zanotto V (2012) Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning. Robot Comput-Integr Manuf 28(2):164–181

    Article  Google Scholar 

  39. Ge SS, Cui YJ (2000) New potential functions for mobile robot path planning. IEEE Trans Robot Autom 16(5):615–620

    Article  Google Scholar 

  40. Guarino Lo Bianco C (2001a) A semi-infinite optimization approach to optimal spline trajectory planning of mechanical manipulators. In: Goberna MA, Lopez MA (eds) Semi-infinite programming: recent advances. Springer, pp 271–297

    Google Scholar 

  41. Guarino Lo Bianco C, Piazzi A (2001b) A hybrid algorithm for infinitely constrained optimization. Int J Syst Sci 32(1):91–102

    Article  MATH  MathSciNet  Google Scholar 

  42. Guldner J, Utkin VI (1995) Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE Trans Robot Autom 11(2):247–254

    Article  Google Scholar 

  43. Gupta K, Del Pobil AP (1998) Practical motion planning in robotics: current approaches and future directions. Wiley

    Google Scholar 

  44. Hansen C, Oltjen J, Meike D, Ortmaier T (2012) Enhanced approach for energy-efficient trajectory generation of industrial robots. In: Proceedings of the 2012 IEEE international conference on automation science and engineering (CASE 2012), pp 1–7

    Google Scholar 

  45. Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255

    Article  Google Scholar 

  46. Huang P, Xu Y, Liang B (2006) Global minimum-jerk trajectory planning of space manipulator. Int J Control, Autom Syst 4(4):405–413

    Google Scholar 

  47. Ismail M, Samir L, Romdhane L (2013) Dynamic in path planning of a cable driven robot. Design and modeling of mechanical systems. Springer, Berlin, pp 11–18

    Chapter  Google Scholar 

  48. Jing XJ (2008) Edited by. Motion planning, InTech

    Google Scholar 

  49. Kazemi M, Gupta K, Mehrandezh M (2010) Path-planning for visual servoing: a review and issues. Visual servoing via advanced numerical methods. Springer, London, pp 189–207

    Book  Google Scholar 

  50. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE international conference on robotics and automation, pp 500–505

    Google Scholar 

  51. Kim JO, Khosla PK (1992) Real-time obstacle avoidance using harmonic potential functions. IEEE Trans Robot Autom 8(3):338–349

    Article  Google Scholar 

  52. Kim J, Kim SR, Kim SJ, Kim DH (2010) A practical approach for minimum-time trajectory planning for industrial robots. Ind Robot: Int J 37(1):51–61

    Article  Google Scholar 

  53. Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans Robot Autom 8(5):501–518

    Article  Google Scholar 

  54. Kumar V, Zefran M, Ostrowski JP (1999) Motion planning and control of robots. In: Nof Shimon Y (ed) Handbook of industrial robotics, 2nd edn, vol 2. Wiley

    Google Scholar 

  55. Kunchev V, Jain L, Ivancevic V, Finn A (2006) Path planning and obstacle avoidance for autonomous mobile robots: a review. Knowledge-based intelligent information and engineering systems. Springer, Berlin, pp 537–544

    Google Scholar 

  56. Kyriakopoulos KJ, Saridis GN (1988) Minimum jerk path generation. In: Proceedings of the 1988 IEEE international conference on robotics and automation, pp 364–369

    Google Scholar 

  57. Latombe JC (1991) Robot motion planning. Kluwer

    Google Scholar 

  58. LaValle SM (2006) Planning algorithms. Cambridge University Press

    Google Scholar 

  59. Lin CS, Chang PR, Luh JYS (1983) Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans Autom Control 28(12):1066–1073

    Article  MATH  Google Scholar 

  60. Liu H, Lai X, Wu W (2013) Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot Comput-Integr Manuf 29(2):309–317

    Article  Google Scholar 

  61. Lombai F, Szederkenyi G (2008) Trajectory tracking control of a 6-degree-of-freedom robot arm using nonlinear optimization. In: Proceedings of the 10th IEEE international workshop on advanced motion control, pp 655–660

    Google Scholar 

  62. Lombai F, Szederkenyi G (2009) Throwing motion generation using nonlinear optimization on a 6-degree-of-freedom robot manipulator. In: Proceedings of the 2009 IEEE international conference on mechatronics, pp 1–6

    Google Scholar 

  63. Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570

    Article  Google Scholar 

  64. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120

    Article  MathSciNet  Google Scholar 

  65. Martin BJ, Bobrow JE (1999) Minimum effort motions for open chain manipulators with task-dependent end-effector constraints. Int J Robot Res 18(2):213–224

    Article  Google Scholar 

  66. Nissoux C, Simon T, Latombe JC (1999) Visibility based probabilistic roadmaps. In: Proceedings of the 1999 IEEE international conference on intelligent robots and systems, pp 1316–1321

    Google Scholar 

  67. Pardo-Castellote G, Cannon RH (1996) Proximate time-optimal algorithm for on-line path parameterization and modification. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 1539–1546

    Google Scholar 

  68. Pellicciari M, Berselli G, Leali F, Vergnano A (2013) A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics 23(3):326–334

    Article  Google Scholar 

  69. Petrinec K, Kovacic Z (2007) Trajectory planning algorithm based on the continuity of jerk. In: Proceedings of the 2007 Mediterranean conference on control and automation, pp 1–5

    Google Scholar 

  70. Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans Ind Electron 47(1):140–149

    Article  Google Scholar 

  71. Piazzi A, Visioli A (1997b) A cutting-plane algorithm for minimum-time trajectory planning of industrial robots. In: Proceedings of the 36th Conference on decision and control, pp 1216–1218

    Google Scholar 

  72. Piazzi A, Visioli A (1997a) A global optimization approach to trajectory planning for industrial robots, In: Proceedings of the 1997 IEEE-RSJ international conference on intelligent robots and systems, pp 1553–1559

    Google Scholar 

  73. Piazzi A, Visioli A (1997c) An interval algorithm for minimum-jerk trajectory planning of robot manipulators. In: Proceedings of the 36th Conference on decision and control, pp 1924–1927

    Google Scholar 

  74. Rubio F, Valero F, Sunyer J, Cuadrado J (2012) Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Ind Robot Int J 39(1):92–100

    Article  Google Scholar 

  75. Saramago SFP, Steffen V Jr (1998) Optimization of the trajectory planning of robot manipulators tacking into account the dynamics of the system. Mech Mach Theory 33(7):883–894

    Article  MATH  MathSciNet  Google Scholar 

  76. Saramago SFP, Steffen V Jr (2000) Optimal trajectory planning of robot manipulators in the presence of moving obstacles. Mech Mach Theory 35(8):1079–1094

    Article  MATH  MathSciNet  Google Scholar 

  77. Saravan R, Ramabalan R, Balamurugan C (2009) Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles. Eng Appl Artif Intell 22(2):329–342

    Article  Google Scholar 

  78. Sciavicco L, Siciliano B, Villani L, Oriolo G (2009) Robotics. Modelling, planning and control. Springer, London

    Google Scholar 

  79. Shiller Z (1996) Time-energy optimal control of articulated systems with geometric path constraints. J Dyn Syst Meas Control 118:139–143

    Article  MATH  Google Scholar 

  80. Shin KG, McKay ND (1985) Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans Autom Control 30(6):531–541

    Article  MATH  Google Scholar 

  81. Shin KG, McKay ND (1986) A Dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans Autom Control 31(6):491–500

    Article  MATH  Google Scholar 

  82. Simon D (1993) The application of neural networks to optimal robot trajectory planning. Robot Auton Syst 11(1):23–34

    Article  Google Scholar 

  83. Simon D, Isik C (1993) A trigonometric trajectory generator for robotic arms. Int J Control 57(3):505–517

    Article  MATH  MathSciNet  Google Scholar 

  84. Takahashi O, Schilling RJ (1989) Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans Robot Autom 5(2):143–150

    Article  Google Scholar 

  85. Tangpattanakul P, Meesomboon A, Artrit P (2010) Optimal trajectory of robot manipulator using harmony search algorithms. Recent advances in harmony search algorithm. Springer, Berlin, pp 23–36

    Chapter  Google Scholar 

  86. Tangpattanakul P, Artrit P (2009) Minimum-time trajectory of robot manipulator using harmony search algorithm. In: Proceedings of the IEEE 6th international conference on ECTI-CON 2009, pp 354–357

    Google Scholar 

  87. Trevisani A (2010) Underconstrained planar cable-direct-driven robots: a trajectory planning method ensuring positive and bounded cable tensions. Mechatronics 20(1):113–127

    Article  Google Scholar 

  88. Trevisani A (2013) Experimental validation of a trajectory planning approach avoiding cable slackness and excessive tension in underconstrained translational planar cable-driven robots. Cable-driven parallel robots. Springer, Berlin, pp 23–29

    Chapter  Google Scholar 

  89. Van Dijk NJM, Van de Wouw N, Nijmeijer H, Pancras WCM (2007) Path-constrained motion planning for robotics based on kinematic constraints. In: Proceedings of the ASME 2007 international design engineering technical conference and computers and information in engineering conference, pp 1–10

    Google Scholar 

  90. Verscheure D, Demeulenaere B, Swevers J, De Schutter J, Diehl M (2008) Time-energy optimal path tracking for robots: a numerically efficient optimization approach. In: Proceedings of the 10th international workshop on advanced motion control, pp 727–732

    Google Scholar 

  91. Volpe RA (1990) Real and artificial forces in the control of manipulators: theory and experiments. The Robotics Institute, Carnegie Mellon University, Pittsburgh, 1990

    Google Scholar 

  92. Volpe RA, Khosla PK (1990) Manipulator control with superquadric artificial potential functions: theory and experiments. IEEE Trans Syst, Man, Cybern 20(6):1423–1436

    Article  Google Scholar 

  93. Wang CH, Horng JG (1990) Constrained minimum-time path planning for robot manipulators via virtual knots of the cubic B-spline functions. IEEE Trans Autom Control 35(5):573–577

    Article  MATH  Google Scholar 

  94. Williams RL, Gallina P (2002) Planar cable-direct-driven robots: design for wrench exertion. J Intell Robot Syst 35(2):203–219

    Article  MATH  Google Scholar 

  95. Xu H, Zhuang J, Wang S, Zhu Z (2009) Global time-energy optimal planning of robot trajectories. In: Proceedings of the international conference on mechatronics and automation, pp 4034–4039

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Gasparetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R. (2015). Path Planning and Trajectory Planning Algorithms: A General Overview. In: Carbone, G., Gomez-Bravo, F. (eds) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14705-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14705-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14704-8

  • Online ISBN: 978-3-319-14705-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics