Skip to main content
Log in

Wheeled Mobile Robots Control in a Linear Platoon

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Future transportation systems will require a number of drastic measures, mostly to lower traffic jams and air pollution in urban areas. Automatically guided vehicles capable of driving in a platoon fashion will represent an important feature of such systems. Platooning of a group of automated wheeled mobile robots relying on relative sensor information only is addressed in this paper. Each vehicle in the platoon must precisely follow the path of the vehicle in front of it and maintain the desired safety distance to that same vehicle. Vehicles have only distance and azimuth information to the preceding vehicle where no inter-vehicle communication is available. Following vehicles determine their reference positions and orientations based on estimated paths of the vehicles in front of them. Vehicles in the platoon are then controlled to follow the estimated trajectories. Then presented platooning control strategies are experimentally validated by experiments on a group of small-sized mobile robots and on a Pioneer 3AT mobile robot. The results and robustness analysis show the proposed platooning approach applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balluchi, A., Bicchi, A., Balestrino, A., Casalino, G.: Path Tracking Control for Dubin’s Cars. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp. 3123–3128. Minneapolis, Minnesota (1996)

  2. Bom, J., Thuilot, B., Marmoiton, F., Martinet, P.: A Global Control Strategy for Urban Vehicles Platooning relying on Nonlinear Decoupling Laws. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, pp. 1995–2000 (2005)

  3. Canudas de Wit, C., Sordalen, O.J.: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Autom. Control 37(11), 1791–1797 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Contet, J-M., Gechter, F., Gruer, P., Koukam, A.: Application of reactive multiagent system to linear vehicle platoon. In: Annual IEEE International Conference on Tools with Artificial Intelligence(*ICTAI*). Patras, Grece (2007)

  5. Cortés, J., Martnez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  6. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a pltoon. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 41–46. Tokyo, Japan (1996)

  7. Fredslund, J., Matarić, M.: A general algorithm for robot formations using local sensing and minimal communications. IEEE Trans. Robot. Autom. 18(5), 837–846 (2002)

    Article  Google Scholar 

  8. Gehrig, S.K., Stein, F.J.: Elastic bands to enhance vehicle following. In: IEEE Intelligent Transportation Systems Conference Proceedings, ITSC, pp. 597–602. Oakland, CA (2001)

  9. Halle, S., Chaib-draa, B.: A collaborative driving system based on multiagent modeling and simulations. J. Trans. Res. Part C (TRC-C): Emergent Technol. 13(4), 320–345 (2005)

    Article  Google Scholar 

  10. Hedrick, J., Tomizuka, M., Varaiya P.: Control issues in automated highway systems. IEEE Control Syst. Magazine 14(6), 21–32 (1994)

    Article  Google Scholar 

  11. Ioannou, P., Xu Z.: Throttle and brake control systems for automatic vehicle following. IVHS J. 1(4), 345–377 (1994)

    Google Scholar 

  12. Klančar, G., Kristan, M., Kovačič, S., Orqueda, O.: Robust and efficient vision system for group of cooperating mobile robots with application to soccer robots. ISA Trans. 43, 329–342 (2004)

    Article  Google Scholar 

  13. Klančar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55(6), 460–469 (2007)

    Article  Google Scholar 

  14. Kolmanovsky, I., McClamroch, N.H.: Developments in Nonholonomic Control Problems. IEEE Control Syst. 15(6), 20–36 (1995)

    Article  Google Scholar 

  15. Laumond, J.P.: Robot motion planning and control. In: Lecture Notes in Control and Information Science, Vol. 229. Springer-Verlag, New York (1998)

    Google Scholar 

  16. Lee, H., Tomizuka, M.: Adaptive vehicle traction force control for intelligent vehicle highway systems (ivhss). IEEE Trans. Ind. Electron. 50(1), 37–47 (2003)

    Article  Google Scholar 

  17. Lee, M., Jung, M., Kim, J.: Evolutionary programming-based fuzzy logic path planner and follower for mobile robots. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, Vol 1, pp. 139–144. San Diego, CA (2000)

  18. Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočnik, B.: Time optimal planning considering acceleration limits. Robot. Auton. Syst. 45, 199–210 (2003)

    Article  Google Scholar 

  19. Luca, A., Oriolo, G.: Modelling and control of nonholonomic mechanical systems. In: Angeles, J., Kecskemethy, A., (eds.) Kinematics and Dynamics of Multi-Body Systems. Springer-Verlag, Wien, Austria (1995)

    Google Scholar 

  20. Luca, A., Oriolo, G., Vendittelli, M.: Control of wheeled mobile robots: An experimental overview. In: Nicosia, S., Siciliano, B., Bicchi, A., Valigi, P., (eds.) RAMSETE - Articulated and Mobile Robotics for Services and Technologies. Springer-Verlag, London, UK (2001)

    Google Scholar 

  21. Oblak, S., Škrjanc, I.: A comparison of fuzzy and CPWL approximations in the continuous-time nonlinear model-predictive control of time-delayed Wiener-type systems. J. Intell. Robot. Syst. 47(2), 125–137 (2006)

    Article  Google Scholar 

  22. Oriolo, G., Luca, A., Vandittelli, M.: WMR control via dynamic feed-back linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)

    Article  Google Scholar 

  23. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  24. Sarkar, N., Yun, X., Kumar, V.: Control of mechanical systems with rolling constraints: application to dynamic control of mobile robot. Int. J. Rob. Res. 13(1), 55–69 (1994)

    Article  Google Scholar 

  25. Sheikholeslam, S., Desoer, C.A.: Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: a system level study. IEEE Trans. Veh. Technol. 42(4), 546–554 (1993)

    Article  Google Scholar 

  26. Yi, S.-Y, Chong K.-T.: Impedance control for a vehicle platoon system. Mechatronics. 15(5), 627–638 (2005)

    Article  Google Scholar 

  27. http://msc.fe.uni-lj.si/PublicWWW/Klancar/RobotsPlatoon.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Klančar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klančar, G., Matko, D. & Blažič, S. Wheeled Mobile Robots Control in a Linear Platoon. J Intell Robot Syst 54, 709–731 (2009). https://doi.org/10.1007/s10846-008-9285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9285-7

Keywords

Navigation