Skip to main content

Path Tracking for Automated Driving: A Tutorial on Control System Formulations and Ongoing Research

  • Chapter
  • First Online:
Automated Driving

Abstract

In the United States, the DARPA (Defense Advanced Research Projects Agency) Grand Challenges [Thrun et al. (J. Field Robot. 23(9):661–692, 2006); Urmson et al. (J. Field Robot. 25(8):425–466, 2008); Urmson et al. (J. Field Robot. 23(8):467–508, 2006); Campbell (Steering Control of an Autonomous Ground Vehicle with Application to the DARPA Urban Challenge. Massachusetts Institute of Technology, 2007)] demonstrated that autonomous driving can be achieved through vision and sensor systems capable of detecting and interpreting the vehicle operating environment, rather than through autonomous driving options relying on the infrastructure (e.g., through magnets installed on the road surface to indicate the lanes), or vehicle-to-vehicle or vehicle-to-infrastructure communication systems. The latter options are very useful to further enhance the performance, safety, and energy efficiency, but are not strictly required. In a typical automated driving system, a reference path and a reference speed profile are defined based on the sensed environment. At a lower level of the control system hierarchy, a path tracking controller is responsible for calculating the steering angle for achieving the reference trajectory, while a speed controller determines the wheel torque demand for tracking the reference speed. Speed control implementations are already quite common in production vehicles equipped with cruise control and adaptive cruise control systems. Hence, the core element of novelty for autonomous driving in the area of vehicle control is represented by the steering control function for path tracking. Different steering-based path tracking algorithms, ranging from geometrical methods to model-predictive controllers, are presented and discussed in this contribution, together with the expected future research and vehicle implementation directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

The superscript:

“*” is used to indicate the complex conjugate transpose.

a::

front semi-wheelbase

\( \overline{a} \)::

longitudinal distance between the center of gravity and the front end of the vehicle

a x, a x,max::

longitudinal acceleration, maximum longitudinal acceleration

a y::

lateral acceleration

ABC, DE::

generic state-space formulation matrices

A r, B r, C r::

state-space matrices for path profile modeling

A v, B v, C v, D v::

state-space matrices for vehicle modeling

A′, B′::

state-space matrices for modeling the tracking dynamics at the centers of percussion

b::

rear semi-wheelbase

\( \overline{b} \)::

longitudinal distance between the center of gravity and the rear end of the vehicle

b δ::

multiplicative factor of steering angle in the yaw acceleration error formulation used for backstepping control design

B 1, B 2, B 3::

matrices of the state-space single-track model formulation

\( \mathcal{B} \)::

box used in the formulation of the tube-based model predictive controller

\( \overline{c} \)::

half of vehicle width

c COP,f, c COP,r::

coefficients used in the definition of the sliding variables for the front and rear centers of percussion

c::

constant gain for sliding mode controller

C f, C r,::

front and rear axle cornering stiffnesses

\( {C}_{\text{f},{\mu}_{{\mathrm{c}}_0}} \), \( {C}_{\text{r},{\mu}_{{\mathrm{c}}_0}} \)::

front and rear axle cornering stiffnesses for the nominal tire-road friction coefficient \( {\mu}_{{\mathrm{c}}_0} = 1 \)

C β, C ψ, C Δψ, C κ::

coefficients used for backstepping controller design

C 1, C 2::

controller formulations 1 and 2

d::

distance from the summit of the bend

\( {d}_{\min_{k,t}} \)::

minimum distance between the vehicle and the obstacle points calculated at time t and associated with the time k within the tracking horizon

d k,t,j::

distance between the vehicle and the obstacle point j calculated at time t and associated with the time k within the tracking horizon

d 1, d 2::

denominators of controller formulations C 1 and C 2

e, e k::

error, discretised error

D r::

damping ratio

D (s L)::

denominator of the transfer function

f a::

function expressing the system dynamics

\( {f}_{s_{k,t},{\mu}_{{\mathrm{c}}_{k,t}}}^{dt} \)::

system model function for the coordinate s k,t and the tire road friction coefficient \( {\mu}_{{\mathrm{c}}_{k,t}} \) calculated at time t and associated with the time k within the tracking horizon

F b,l, F b,r::

braking forces on the left-hand and right-hand sides of the vehicle

F y,f, F y,r::

lateral forces at the front and rear axles

\( {F}_{y,\mathrm{f}}^{\mathrm{FB}} \), \( {F}_{y,\mathrm{r}}^{\mathrm{FB}} \)::

feedback contribution to the reference lateral forces on the front and rear axles

\( {F}_{y,\mathrm{f}}^{\mathrm{FFW}} \), \( {F}_{y,\mathrm{r}}^{\mathrm{FFW}} \)::

feedforward contribution to the lateral forces on the front and rear axles

\( F_{y,\mathrm{f}}^{\mathrm{TOT}} \)::

sum of the feedforward and feedback contributions to the lateral forces on the front axle

g::

gravity

g x,PP, g y,PP, g x,S, g y,S::

longitudinal and lateral coordinates of the goal points according to the pure pursuit and Stanley path tracking methods

g(ξ)::

nonlinear term within the model formulation for the robust tube-based controller design

G c::

compensator of actuator dynamics

G H, \( {\widetilde{M}}_H \), \( {\widetilde{N}}_H \)::

matrices used for the coprime factorization of the nominal plant within the H controller design

G H, \( {{\Delta}}_{M_H} \), \( {{\Delta}}_{N_H} \)::

matrices used for the coprime factorization of the perturbed plant within the H controller design

\( {G}_{l_d} \)::

virtual sensor look-ahead filter

h::

function for obtaining the outputs starting from the inputs

h p::

generic parameter considered in the parameter space approach

h'::

matrix for modeling the disturbances

\( \mathfrak{H} \)::

polytopes used in the definitions of Pontryagin difference and Minkowski sum

H C, H P::

control horizon, prediction horizon

\( \mathcal{H} \)::

set of parameters in the parameters space approach

i::

imaginary unit

I z::

yaw moment of inertia

J::

cost function for optimal control

\( {J}_{\text{ob}{\mathrm{s}}_{k,t}} \)::

cost function at time t and associated with the time k to the predicted distance between the vehicle and the obstacle

J 1, J 2::

tracking performance criteria

k::

discretization step number or step time

k c,k int::

controller gain and integrator to keep the steady-state tracking error small

k ch::

control gain of the chained-form controller used for calculating \( {k}_{1_{\text{CC}}} \), \( {k}_{2_{\text{CC}}} \), and \( {k}_{3_{\text{CC}}} \)

k d::

multiplicative factor of the state vector in the discontinuous control law

k D::

derivative gain

k DD::

gain used in the PIDD2 controller

k I::

integral gain

k LK::

control gain in the feedback force contribution on the rear axle, \( {F}_{y,\mathrm{r}}^{\mathrm{FB}} \)

k P::

proportional gain

k PP::

tuning gain of the pure pursuit algorithm

k S::

tuning gain of the Stanley method

k w1,k w2, \( {k}_{\xi_e} \)::

gains used in the optimal preview steering control law

k U::

understeer gradient

\( {k}_{\dot{\psi}} \)::

multiplicative factor of \( \dot{\psi} \)

\( {k}_{\mathit{\Delta}_{y_{CG}}} \)::

multiplicative factor of \( {\mathit{\Delta}_{y_{CG}}} \)

\( {k}_{\mathit{\Delta}_{{yl}_{d}}} \)::

multiplicative factor of \( {\mathit{\Delta}_{yl_{d}}} \)

k ψ,w, \( {k}_{{\Delta}\dot{\psi},w} \), k y,w::

multiplicative factors of the scalar errors \( {\Delta\psi,w}, {\Delta\dot{\psi},w}, {\Delta y,w} \) in the linear quadratic regulator with preview

k ψ, \( {k}_{{\Delta}\dot{\psi}} \)::

multiplicative factor of the heading error, multiplicative factor of the yaw rate error

k ψ,w, \( {k}_{{\Delta}\dot{\psi},w} \), k y,w::

multiplicative factors of the scalar errors \( {\Delta\psi_w}, {\Delta\dot{\psi}_w}, {\Delta y_w} \) in the linear quadratic regulator with preview

k ψ,w, \( {k}_{{\Delta}\dot{\psi},w} \), k y,w::

gains of the preview controller, to be multiplied by the weighted values of the heading angle error, yaw rate error and lateral displacement error

\( {k}_{1_{\text{CC}}} \), \( {k}_{2_{\text{CC}}} \), \( {k}_{3_{\text{CC}}} \)::

gains of the chained controller

\( {k}_{1_{\text{LC}}},{k}_{2_{\text{LC}}},{k}_{3_{\text{LC}}},{k}_{4_{\text{LC}}} \)::

gains of the limit cornering controller

\( {k}_{1_{\text{LQ}}},{k}_{2_{\text{LQ}}},{k}_{3_{\text{LQ}}},{k}_{4_{\text{LQ}}} \)::

gains of the linear quadratic controller

K::

rate of decay of \( {{\Delta }y}_{l_{\text{d}}} \)

K d::

gain multiplying \( {{\Delta }y}_{l_{\text{d}}} \)

K LC::

linear quadric matrix gain of the limit cornering controller

K LQ::

matrix gain of the linear quadratic regulator

\( {K}_{\text{L}{\mathrm{Q}}_{\text{P}}} \)::

matrix gain of the linear quadratic regulator with preview

K OBS::

collision weight

l::

wheelbase

l d::

look-ahead distance

L::

vehicle wheelbase

L Lipschitz::

Lipschitz constant

L Lyapunov::

Lyapunov function

m::

vehicle mass

M::

constant big enough to disregard obstacles that do not lie within the vehicle line of sight

M COP,f, M COP,r::

gains to provide robustness against the variation of cornering stiffness

M u::

tuning parameter of the sliding mode controller

M z::

yaw moment

n::

counter

n 1, n 2::

numerators of controller formulations C 1 and C 2

N::

matrix of the Riccati equation for linear quadratic regulator design

p::

characteristic polynomial

\( {p}_{x_{k,t,j}} \), \( {p}_{y_{k,t,j}} \)::

coordinates of the j-th point of the obstacle in the body frame, calculated at time t and associated with the time k within the tracking horizon

\( {p}_{X_{t,j}} \), \( {p}_{Y_{t,j}} \)::

coordinates of the j-th point of the obstacle in the inertial frame at time t

P L::

Lyapunov matrix

P t,j::

j-th point of the obstacle in the inertial frame at time t

P 1P 2::

transfer functions calculated from a linear single-track model of the system, used in the feedforward contribution δ FFW,1

\( \widehat{q} \)::

observer output

\( {q}_{{\Delta }{a}_y} \), \( {q}_{{\Delta }{y}_{l_{\text{d}}}} \), q ψ, q i::

parameters of the filters of the frequency-shaped linear quadratic controller

q 1, q 2, q 3, q 4::

extreme operating points for the Γ-stability controller

Q, R::

weighting matrices of the cost function formulation

\( \hbox{Reach}_\text{f} (\mathcal{S,W}) \)::

one-step robust reachable set from a given set of states \( (\mathcal{S}) \)

r::

input of the model reference system obtained by scaling the input of the desired trajectory generator

R tr::

trajectory radius

s, \( \dot{s} \)::

trajectory coordinate and its time derivative

s L::

Laplace operator

S::

matrix of the Riccati equation for linear quadratic regulator design

t::

time

\( {t}_{l_{\text{d}}} \)::

time corresponding to the look-ahead distance (at the current vehicle speed)

t r::

time delay due to the driver’s reaction

t d::

time delay

t 1,t 2::

initial and final time values

T::

matrix describing the dynamics of the system considering the center of percussion

T b,lf, T b,rf, T b,lr, T b,rr::

braking torques of the left front, right front, left rear, and right rear wheels

T i::

time constant of the first order filter in the derivative term of the PID controller' and delete the existing line

T s::

sampling time

u::

input vector in the state-space formulation

\( \overline{u} \)::

vector of the front and rear steering angles

u k, \( {\overline{u}}_k \), \( {\widehat{u}}_k\left({e}_k\right) \)::

control law, nominal controller, and state feedback control action used in the robust tube-based model predictive controller

u 1, u 2::

control outputs of the chained controller

\( \mathcal{U} \), \( \overline{\mathcal{U}} \)::

polyhedra used in the tube-based model predictive control constraints

\( v \), \( v_x \), \( v_y \), \( v_{\rm{max}} \)::

vehicle speed, longitudinal and lateral components of vehicle speed, maximum speed

\( v_{k,t} \)::

speed of the vehicle at time k predicted at time t

\( {\dot{v}}_{y,\mathrm{path},\mathrm{CG}} \)::

time derivative of the lateral velocity of the path

\( v_0 \)::

speed at which the four-wheel-steering controller changes the sign of the steering angle of the rear axle (transition from opposite signs to the same signs of the front and rear steering angles)

V 1, V 2::

control outputs of the chained controller vehicle dynamics transfer functions

w::

system disturbance

\( \tilde{{w}} \)::

element of \( \widetilde{\mathcal{W}} \)

\( {W}_d,{W}_{\dot{\psi}} \)::

weighting function adopted in the backstepping steering control law

\( \mathcal{W} \)::

polyhedron used in the robust tube-based model predictive control constraints

\( \widetilde{\mathcal{W}} \)::

Minkowski sum of the two polytopes \( \mathcal{W} \) and \( \mathcal{B} \)

x, h::

elements of the polytopes used in the definition of Pontryagin difference and Minkowski sum

\( {{{x}}_{{{\mathrm{COP}}}_{\text{f}}}} \), \( {{{x}}_{{{\mathrm{COP}}}_{\text{r}}}} \) \( {{\dot{y}}_{{{\mathrm{COP}}}_{\text{f}}}} \),\( {{\dot{y}}_{{{\mathrm{COP}}}_{\text{r}}}} \)::

time derivatives of the positions of the center of percussion corresponding to the front and rear axle coordinates of the front and rear centers of percussion

x P::

longitudinal position of a generic point P in the vehicle reference system

\( {\dot{x}}_{\text{ref}} \)::

reference longitudinal speed

x v,y v::

vehicle positions in the tracking coordinates

X,Y::

coordinates in the inertial reference system

X r, \( {Y}_{\text{r}},{\dot{X}}_{\text{r}} \), \( {\dot{Y}}_{\text{r}} \)::

positions and velocities of the rear wheel according to the inertial reference system

y,y k::

output and discrete output of the state-space formulation

y ri::

disturbance in the form of white noise in the linear quadratic regulator with preview

\( {\ddot{y}}_{l_{\text{d}}} \)::

lateral acceleration at the look-ahead distance l d

\( {\ddot{y}}_{{\text{ref}}} \)::

reference lateral acceleration

\( {{y}}_{{\text{ref}}} \)::

reference lateral position in the inertial frame

Y ref::

reference lateral position in the inertial frame

z::

complex number used in the z-transform representation

z 1, z 2, z 3, z 4::

augmented states for modelling the filter dynamics

z MPCz MPCref::

system outputs and references in the model predictive controller

\( \mathcal{Z} \), \( {\mathcal{Z}}_{\mathit{\infty}} \)::

subset of Ξ, minimal robust positively invariant set

α::

half of the angular extension of the circular arc defined by the pure pursuit algorithm

α r::

slip angle of the rear axle

α ref,f::

reference slip angle of the front axle

\( {\alpha}_{\text{f}}^{\mathrm{FFW}} \), \( {\alpha}_{\text{r}}^{\mathrm{FFW}} \)::

reference values of the feedforward contributions to the front and rear slip angles

α 1, α 2::

functions of the states, reference path and steering wheel input in the chained controller

α 1,ST, α 2,ST::

tuning constants of the super-twisting controller

β, β SS::

vehicle sideslip angle, steady-state vehicle sideslip angle

β x,f, β y,fβ r::

normalized longitudinal force on the front axle, normalized lateral force on the front axle, normalized longitudinal force on the rear axle

γ::

sensitivity parameter for LQR design

Γ, ∂Γ::

desired region for locating the poles of the closed-loop system, with the corresponding boundary

δ::

steering angle. In the case of absence of any subscript, this notation refers to the front axle. In the case of a four-wheel-steering vehicle, the subscript “f” is used to indicate the front steering angle and the subscript “r” is used to indicate the rear steering angle. The additional subscript “ss” is used to indicate steady-state conditions

\( \delta, \dot{\delta} \)::

steering angle and its time derivative. In the case of absence of any subscript, this notation refers to the front axle. In the case of a four-wheel-steering vehicle, the subscript `f' is used to indicate the front steering angle and the subscript r' is used to indicate the rear steering angle. The additional subscript `ss' is used to indicate steady-state conditions

δ eq::

equivalent steering angle in the super-twisting sliding mode formulation

δ FB,LC,1, δ FB,LC,2, δ FB,LC,3::

feedback steering angle contributions according to different formulations of the path tracking controllers for limit cornering

δ FFW,LC::

feedforward steering angle contribution according to the path tracking controller for limit cornering

δ FFW,1, δ FFW,2δ FFW,3::

feedforward contributions to the reference steering angle according to different formulations

δ min, δ max::

minimum steering angle, maximum steering angle

δ ST, δ ST,1, δ ST,2::

steering angle contribution of the super-twisting controller, consisting of the contributions δ ST,1 and δ ST,2

\( {\dot{\delta}}_{y_{\text{f}}} \)::

steering rate contribution depending on the lateral deviation error at the front end of the vehicle

\( {\dot{\delta}}_{\dot{\psi} } \)::

steering rate contribution depending on vehicle yaw rate

Δa y::

difference between the reference and the actual lateral acceleration

Δu, Δu min, Δu max \( \Delta u \) ::

control input variation

ΔU t::

optimization vector at time t

Δy, \( \Delta \dot{y} \), \( \Delta \ddot{y} \)::

lateral position error and its first and second time derivatives. They can be calculated at the front axle (hence the subscript “f”), at the rear axle (hence the subscript “r”), at the vehicle center of gravity (hence the subscript “CG”), or at any other point along the longitudinal axis of the vehicle reference system (e.g., at the center of percussion or at the look-ahead distance)

Δy CG,SS::

steady-state value of Δy CG

Y rms ,Y max::

root mean square error on vehicle lateral position, maximum error on the vehicle lateral position

Δδ min, Δδ max::

minimum and maximum variation of the steering angle

Δψ, \( {\Delta}\dot{\psi} \), \( \Delta \ddot{\psi} \)::

yaw angle (i.e., heading) error and its first and second time derivatives. They can be calculated with respect to the reference path at the front axle (hence the subscript “f”), at the rear axle (hence the subscript “r”), at the vehicle center of gravity (hence the subscript “CG”), or at any other point on the longitudinal axis of the vehicle reference system (e.g., at the centers of percussion)

Δψ CG,SS::

steady-state value of the yaw angle error

ψ rms, ∆ψ max::

root mean square error on the yaw angle, maximum error on the yaw angle

\( \Delta\psi_{w}, {\Delta}\dot{\psi}_{w}, \Delta y_{w} \)::

scalar values of the weighted average of the heading errors and lateral position error along the preview distance

Δψ SS::

steady-state value of the yaw angle error

ε::

small number

\( \mathcal{E} \)::

subset of Ξ containing {0}

ϵ, ϵ max::

stability margin and maximum stability margin within the H controller design

ξ, ξ ref::

state vector, reference state vector

ξ augm.::

augmented state vector for the frequency-shaped linear quadratic controller

ξ k, \( {\overline{\xi}}_k \)::

discrete state vector and predicted state vector

\( {\xi}_{v_k} \)::

discrete state vector used for describing the vehicle system in the tracking coordinates

Ξ, \( \overline{\Xi} \)::

polyhedra used in the tube-based model predictive control constraints

η r::

corrective coefficient of the rear axle cornering stiffness

κ, \( \widehat{\kappa} \)::

path curvature and its estimated value. They can be calculated at the front axle (hence the subscript “f”), at the rear axle (hence the subscript “r”), or at any other point along the longitudinal axis of the vehicle reference system (e.g., the front and rear centers of percussion)

κ'::

derivative of the path curvature with respect to the trajectory coordinate

λ::

sliding mode lateral position gain

\( {\lambda}_{{\Delta }{a}_y} \), \( {\lambda}_{{\Delta }{y_l}_{\text{d}}} \), λ ψ::

parameters of the filters of the frequency-shaped linear quadratic controller

μ c::

tire-road friction coefficient

μ f, μ r::

parameters for avoiding chattering in the sliding mode controller

σ, σ f, σ r::

sliding variable, front sliding variable and rear sliding variable

σ L::

real part of the hyperbola in s L-plane

\( \sigma_{\mathrm{L} _0} \)::

parameter of the hyperbola in \( s_{L} \)-plane

τ::

integration variable

ϕ r::

road camber angle

ψ \( \psi, \dot{\psi}, \ddot{\psi} \)::

vehicle yaw angle and its time derivatives

ψ path, \( {\dot{\psi}}_{\text{path}} \)::

yaw angle corresponding to the reference path and its time derivative. They can be calculated on a point of the reference trajectory corresponding to the vehicle center of gravity (hence ψ path,CG and \( {\dot{\psi}}_{\text{path},\mathrm{CG}} \)), the front axle (hence ψ path,f and \( {\dot{\psi}}_{\text{path},\mathrm{f}} \)), the rear axle (hence ψ path,r and \( {\dot{\psi}}_{\text{path},\mathrm{r}} \)), or any other location on the longitudinal axis of the vehicle reference system (e.g., at the front bumper)

ψ ref, \( {\dot{\psi}}_{\text{ref}} \), \( {\ddot{\psi}}_{\text{ref}} \)::

reference yaw angle and its first and second time derivatives

ω C::

pulsation

ω f, ω r::

angular speeds of the front and rear wheels

ω lf ω rf ω lr ω rr::

angular speeds of the left front, right front, left rear and right rear wheels

ω L::

imaginary part of the hyperbola in s L-plane

\( \omega_{\mathrm{L}_0} \)::

parameter of the hyperbola in \( s_{L} \)-plane

⊖::

Pontryagin difference of two polytopes

⨁::

Minkowski sum of two polytopes

References

  1. SAE standard J0316, Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems (2014)

    Google Scholar 

  2. T. J. Gordon, M. Lidberg, Automated driving and autonomous functions on road vehicles. Vehicle Syst. Dyn. 53(7), 958–994 (2015)

    Google Scholar 

  3. C. C. MacAdam, Application of an optimal preview control for simulation of closed-loop automobile driving. IEEE Trans. Syst. Man Cybern. SMC-11(6), 393–399 (1981)

    Google Scholar 

  4. G. Genta, Motor Vehicle Dynamics: Modeling and Simulation (World Scientific, Singapore, 1997)

    Google Scholar 

  5. R. S. Sharp, D. Casanova, P. Symonds, A mathematical model for driver steering control, with design, tuning and performance results. Vehicle Syst. Dyn. 33, 289–326 (2000)

    Google Scholar 

  6. R. S. Sharp, Driver steering control and a new perspective on car handling qualities. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 219(10), 1041–1051 (2005)

    Google Scholar 

  7. R. S. Sharp, Rider control of a motorcycle near to its cornering limits. Vehicle Syst. Dyn. 50(8), 1193–1208 (2012)

    Google Scholar 

  8. C. I. Chatzikomis, K. N. Spentzas, A path-following driver model with longitudinal and lateral control of vehicle’s motion. Forsch. Ingenieurwes. 73, 257–266 (2009)

    Google Scholar 

  9. G. Markkula, A review of near-collision driver behaviour models. Hum. Factors 54(6), 1117–1143 (2012)

    Google Scholar 

  10. Y. Ohshima et al., Control system for automatic automobile driving. IFAC Tokyo Symposium on Systems Engineering for Control System Design, 1965

    Google Scholar 

  11. R. E. Fenton, R. J. Mayhan, Automated highway studies at the Ohio State University – An overview. IEEE Trans. Vehicle Technol. 40(1), 100–113 (1991)

    Google Scholar 

  12. S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, et al., Stanley: The robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)

    Google Scholar 

  13. C. Urmson, J. Anhalt, D. Bagnell, C. Baker, et al., Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)

    Google Scholar 

  14. C. Urmson, C. Ragusa, D. Ray, J. Anhalt, et al., A robust approach to high-speed navigation for unhehearsed desert terrain. J. Field Robot. 23(8), 467–508 (2006)

    Google Scholar 

  15. F.S. Campbell, Steering Control of an Autonomous Ground Vehicle with Application to the DARPA Urban Challenge. Master’s thesis, Massachusetts Institute of Technology, 2007

    Google Scholar 

  16. J.M. Snider, Automatic steering methods for autonomous automobile path tracking. CMU-RI-TR-09-08, Report, Carnegie Mellon University, 2009

    Google Scholar 

  17. A. De Luca, G. Oriolo, C. Samson, Feedback control of a nonholonomic car-like robot, in Robot Motion Planning and Control (Springer, London, 1998)

    Google Scholar 

  18. J.S. Wit, Vector pursuit path tracking for autonomous ground vehicles. PhD thesis, University of Florida, 2000

    Google Scholar 

  19. R. M. Murray, Control of nonholonomic systems using chained forms. Dynamics and control of mechanical systems, the falling cat and related problems. Fields Inst. Commun. 1, 219–245 (1993)

    Google Scholar 

  20. C. Samson, Control of chained systems: Application to path following and time-varying point-stabilization of mobile robots. IEEE Trans. Autom. Control 40(1), 64–77 (1995)

    MathSciNet  Google Scholar 

  21. W. F. Milliken, D. L. Milliken, Race Car Vehicle Dynamics (SAE International, Warrendale, PA, 1995)

    Google Scholar 

  22. M. Guiggiani, The Science of Vehicle Dynamics: Handling, Braking and Ride of Road and Race Cars (Springer, Dordrecht, 2014)

    Google Scholar 

  23. T. D. Gillespie, Fundamentals of Vehicle Dynamics (Society of Automotive Engineers, Warrendale, PA, 1992)

    Google Scholar 

  24. A. Broggi, M. Bertozzi, A. Fascioli, G. Conte, Automatic Vehicle Guidance: The Experience of the ARGO Autonomous Vehicle (World Scientific, Singapore, 1999)

    Google Scholar 

  25. A. Broggi, M. Bertozzi, A. Fascioli, C. G. Lo Bianco, A. Piazzi, The ARGO autonomous vehicle’s vision and control systems. Int. J. Intell. Control Syst. 3(4), 409–441 (1999)

    Google Scholar 

  26. P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz et al., Toward automated driving in cities using close-to-market sensors – An overview of the V-Charge project. IEEE Intelligent Vehicles Symposium, 2013

    Google Scholar 

  27. S. Tsugawa, An overview on control algorithms for automated highway systems. IEEE/IEEJ/JSAE Conference on Intelligent Transportation Systems, 1999

    Google Scholar 

  28. H. Mouri, H. Furusho, Automatic path tracking using linear quadratic control theory. IEEE Conference on Intelligent Transportation Systems, 1997

    Google Scholar 

  29. J. Guldner, H. S. Tan, S. Patwardhan, Analysis of automatic steering control for highway vehicles with look-down lateral reference systems. Vehicle Syst. Dyn. 26(4), 243–269 (1996)

    Google Scholar 

  30. J. C. Hsu, M. Tomizuka, Analyses of vision-based lateral control for automated highway system. Vehicle Syst. Dyn. 30(5), 345–373 (1998)

    Google Scholar 

  31. A. Tachibana et al., An automated highway vehicle system using computer vision – A vehicle control method using a lane line detection system. JSAE Autumn Convention 924, 157–160 (1992)

    Google Scholar 

  32. H. Inoue, H. Mouri, H. Sato, A. Asaoka, S. Ueda, Technologies of Nissan’s AHS test vehicle. 3rd ITS World Congress, 1996

    Google Scholar 

  33. R. Isermann, M. Schorn, U. Stahlin, Anticollision system PRORETA with automatic braking and steering. Vehicle Syst. Dyn. 46(Supplement), 683–694 (2008)

    Google Scholar 

  34. R. Marino, S. Scalzi, M. Netto, Nested PID steering control for lane keeping in autonomous vehicles. Control Eng. Pract. 19, 1459–1467 (2011)

    Google Scholar 

  35. J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser, V. Utkin, Linear and nonlinear controller design for robust automatic steering. IEEE Trans. Control Syst. Technol. 3(1), 132–143 (1995)

    Google Scholar 

  36. J. Ackermann, W. Sienel, Robust control for automatic steering. American Control Conference, 1990

    Google Scholar 

  37. J. Guldner, W. Sienel, J. Ackermann, S. Patwardhan, H.S. Tan, T. Bunte, Robust control design for automatic steering based on feedback of front and tail lateral displacement. European Control Conference, 1997

    Google Scholar 

  38. V. Cerone, A. Chinu, D. Regruto. Experimental results in vision-based lane keeping for highway vehicles. American Control Conference, 2002

    Google Scholar 

  39. M. F. Land, D. N. Lee, Where we look when we steer? Nature 369, 742–744 (1994)

    Google Scholar 

  40. H. S. Tan, B. Bougler, W. B. Zhang, Automatic steering based on roadway markers: From highway driving to precision docking. Vehicle Syst. Dyn. 37(5), 315–338 (2002)

    Google Scholar 

  41. K. Ogata, Modern Control Engineering (Prentice Hall, Englewood Cliffs, NJ, 2011)

    Google Scholar 

  42. H. Peng, M. Tomizuka, Optimal preview control for vehicle lateral guidance. Research Report UCB-ITS-PRR-91-16, California Partners for Advanced Transit and Highways (PATH), 1991

    Google Scholar 

  43. J. M. Hedrick, M. Tomizuka, P. Varaiya, Control issues in automated highway systems. IEEE Trans. Control Syst. 14(6), 21–32 (1994)

    Google Scholar 

  44. H. Peng, M. Tomizuka, Preview control for vehicle lateral guidance in highway automation. American Control Conference, 1991

    Google Scholar 

  45. Q. Zhou, F. Wang, Robust sliding mode control of 4WS vehicles for automatic path tracking. IEEE Intelligent Vehicles Symposium, 2005

    Google Scholar 

  46. T. Hiraoka, O. Nishishara, H. Kumamoto, Automatic path-tracking controller of a four-wheel steering vehicle. Vehicle Syst. Dyn. 47(10), 1205–1227 (2009)

    Google Scholar 

  47. G. Tagne, R. Talj, A. Charara, Design and validation of a robust immersion and invariance controller for the lateral dynamics of intelligent vehicles. Control Eng. Pract. 40, 81–91 (2015)

    Google Scholar 

  48. G. Tagne, R. Talj, A. Charara, Higher-order sliding mode control for lateral dynamics of autonomous vehicles, with experimental validation. IEEE Intelligent Vehicles Symposium, 2013

    Google Scholar 

  49. P. Hingwe, M. Tomizuka, Experimental evaluation of a chatter free sliding mode control for lateral control in AHS. American Control Conference, 1997

    Google Scholar 

  50. H. Imine, T. Madani, Sliding-mode control for automated lane guidance of heavy vehicle. Int. J. Robust Nonlinear Control 23(1), 67–76 (2011)

    MathSciNet  Google Scholar 

  51. C. Hatipolglu, K. Redmill, U. Ozguner, Steering and lane change: A working system. IEEE Conference on Intelligent Transportation System, 1997. ITSC’97, IEEE, 1997

    Google Scholar 

  52. A. B. Will, S. Zak, Modelling and control of an automated vehicle. Vehicle Syst. Dyn. 27, 131–155 (1997)

    Google Scholar 

  53. R. T. O’Brien, P. A. Iglesias, T. J. Urban, Vehicle lateral control for automated highway systems. IEEE Trans. Control Syst. Technol. 4(3), 266–273 (1996)

    Google Scholar 

  54. D. McFarlane, K. Glover, Robust Controller Design Using Normalized Coprime Factor Plant Desciptions (Springer, Berlin, 1989)

    Google Scholar 

  55. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd edn. (Wiley, Chichester, 2005)

    Google Scholar 

  56. S. Hima, B. Lusseti, B. Vanholme, S. Glaser, S. Mammar, Trajectory tracking for highly automated passenger vehicles. 18th IFAC World Congress, 2011

    Google Scholar 

  57. D. H. Shin, B. Y. Joo, Design of a vision-based autonomous path-tracking control system and experimental validation. Proc. Inst. Mech. Eng. 224, 849–864 (2010)

    Google Scholar 

  58. M. Kristic, I. Kanellakopoulos, P. Kotovic, Nonlinear and Adaptive Control Design (John Wiley, New York, 1995)

    Google Scholar 

  59. A. El Hajjaji, S. Bentalba, Fuzzy path tracking control for automatic steering of vehicles. Robot. Auton. Syst. 43(4), 203–213 (2003)

    Google Scholar 

  60. L. Cai, A. B. Rad, W. L. Chan, A genetic fuzzy controller for vehicle automatic steering control. IEEE Trans. Vehicle Technol. 56(2), 529–543 (2007)

    Google Scholar 

  61. T. Hessburg, M. Tomizuka, Fuzzy logic control for lateral vehicle guidance. IEEE Trans. Control Syst. 14(4), 55–63 (1994)

    Google Scholar 

  62. J. E. Naranjo, C. Gonzalez, R. Garcia, T. de Pedro, R. E. Haber, Power-steering control architecture for automatic driving. IEEE Trans. Intell. Transp. Syst. 6(4), 406–415 (2005)

    Google Scholar 

  63. S. Chaib, M.S. Netto, S. Mammar, Adaptive, PID and fuzzy control: A comparison of controllers for vehicle lane keeping. IEEE Intelligent Vehicles Symposium, 2004

    Google Scholar 

  64. M.S. Netto, S. Chaib, S. Mammar, Lateral adaptive control for vehicle lane keeping. American Control Conference, 2004

    Google Scholar 

  65. A. Carvalho, S. Lefevre, G. Schildbach, J. Kong, F. Borrelli, Automated driving: The role of forecast and uncertainty – A control perspective. Eur. J. Control. 24, 14–32 (2015)

    MathSciNet  Google Scholar 

  66. C. Voser, R.Y. Hindiyeh, C. Gerdes, Analysis and control of high sideslip maneuvers. Vehicle Syst. Dyn. 48(Supp.), 317–336 (2010)

    Google Scholar 

  67. K. Kritayakirana, J.C. Gerdes, Using the center of percussion to design a steering controller for an autonomous race car. Vehicle Syst. Dyn. 50(Supp.), 33–51 (2012)

    Google Scholar 

  68. K. Kritayakirana, J. C. Gerdes, Autonomous vehicle control at the limits of handling. Int. J. Vehicle Auton. Syst. 10(4), 271–296 (2012)

    Google Scholar 

  69. K. L. R. Talvala, K. Kritayakirana, J. C. Gerdes, Pushing the limits: From lanekeeping to autonomous racing. Annu. Rev. Control. 35, 137–148 (2011)

    Google Scholar 

  70. N. R. Kapanja, J. C. Gerdes, Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limit of handling. Vehicle Syst. Dyn. 53(12), 1–18 (2015)

    Google Scholar 

  71. E.J. Rossetter, A Potential Field Framework for Active Vehicle Lanekeeping Assistance. Dissertation, Stanford University, 2003

    Google Scholar 

  72. J. M. Maciejowski, Predictive Control with Constraints (Pearson Education, London, 2002)

    Google Scholar 

  73. E. F. Camacho, C. Bordons, Model Predictive Control (Springer, London, 2004)

    Google Scholar 

  74. P. Falcone, Nonlinear model predictive control for autonomous vehicles. PhD thesis, Universita’ del Sannio, 2007

    Google Scholar 

  75. H. Yoshida, S. Shinohara, M. Nagai, Lane change steering maneuver using model predictive control theory. Vehicle Syst. Dyn. 46(Supplement), 669–681 (2008)

    Google Scholar 

  76. P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, D. Hrovat, Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control Syst. Technol. 15(3), 566–580 (2007)

    Google Scholar 

  77. H. B. Pacejka, Tire and Vehicle Dynamics, 3rd edn. (Butterworth-Heinemann, Oxford, 2012)

    Google Scholar 

  78. P. Gill, W. Murray, M. Saunders, M. Wright, NPSOL – Nonlinear Programming Software (Stanford Business Software Inc., Mountain View, CA, 1998)

    Google Scholar 

  79. P. Falcone, H.E. Tseng, F. Borrelli, J. Asgari, D. Hrovat, MPC-based yaw and lateral stabilisation via active front steering and braking. Vehicle Syst. Dyn. 46(Supp.), 611–628 (2008)

    Google Scholar 

  80. G. Yin, J. Li, X. Jin, C. Bian, N. Chen, Integration of motion planning and model-predictive-control-based control system for autonomous electric vehicles. Transport 30(3), 353–360 (2015)

    Google Scholar 

  81. R. Attia, R. Orjuela, M. Basset, Combined longitudinal and lateral control for automated vehicle guidance. Vehicle Syst. Dyn. 52(2), 261–279 (2014)

    Google Scholar 

  82. A. Gallet, M. Spigai, M. Hamidi, Use of vehicle navigation in driver assistance systems. IEEE Symposium on Intelligent Vehicles, 2000

    Google Scholar 

  83. D. Pomerlau, T. Jochem, C. Thorpe, P. Batavia et al., Run-off-road collision avoidance using IVHS countermeasures. Technical Report, US Department of Transportation, 1999

    Google Scholar 

  84. J. He, D. A. Crolla, M. C. Levesley, W. J. Manning, Coordination of active steering, driveline, and braking for integrated vehicle dynamics control. Inst. Mech. Eng., Part D: J. Automob. Eng. 220, 1401–1421 (2006)

    Google Scholar 

  85. P. Tondel, T.A. Johansen, Control allocation for yaw stabilisation in automotive vehicles using multiparametric nonlinear programming. American Control Conference, 2005

    Google Scholar 

  86. Y. Gao, A. Gray, H. E. Tseng, F. Borrelli, A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles. Vehicle Syst. Dyn. 52(6), 802–823 (2014)

    Google Scholar 

  87. S. Yu, H. Chen, F. Allgower, Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. 50th IEEE Conference on Decision and Control and the European Control Conference, 2011

    Google Scholar 

  88. D. Q. Mayne, M. M. Seron, S. V. Rakovic, Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2), 219–224 (2005)

    MathSciNet  Google Scholar 

  89. K.I. Kouramas, S.V. Rakovic, E.C. Kerrigan, J.C. Allwright, D.Q. Mayne, On the minimal robust positively invariant set for linear difference inclusions. 44th IEEE Conference on Decision and Control and the European Control Conference, 2005

    Google Scholar 

  90. B. Kouvaritakis, M. Cannon, S. V. Rakovic, Q. Cheng, Explicit use of probabilistic distributions in linear predictive control. Automatica 46(10), 1719–1724 (2010)

    MathSciNet  Google Scholar 

  91. A. Carvalho, Y. Gao, S. Lefevre, F. Borrelli, Stochastic predictive control of autonomous vehicles in uncertain environment. 12th Symposium on Advanced Vehicle Control, 2014

    Google Scholar 

  92. Y. Gao, T. Lin, F. Borrelli, E. Tseng, D. Hrovat, Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads. 3rd Annual ASME Conference on Dynamic Systems and Controls, 2010

    Google Scholar 

  93. A. Grancharova, T. A. Johansen, Explicit Nonlinear Model Predictive Control – Theory and Applications (Springer, Heidelberg, 2012)

    Google Scholar 

  94. S. Di Cairano, H.E. Tseng, D. Bernardini, A. Bemporad, Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain. IEEE Trans. Control Syst. Technol. 21(4), 1236–1248 (2013)

    Google Scholar 

  95. S. E. Shladover, PATH at 20 – History and major milestones. IEEE Trans. Intell. Transp. Syst. 8(4), 584–592 (2007)

    Google Scholar 

  96. A. van Zanten, Bosch ESP systems: 5 years of experience. SAE 2000-01-1633, 2000

    Google Scholar 

  97. L. De Novellis, A. Sorniotti, P. Gruber, J. Orus, J. M. Rodriguez Fortun, J. Theunissen, J. De Smet, Direct yaw moment control actuated through electric drivetrains and friction brakes: Theoretical design and experimental assessment. Mechatronics 26, 1–15 (2015)

    Google Scholar 

  98. L. De Novellis, A. Sorniotti, P. Gruber, Driving modes for designing the cornering response of fully electric vehicles with multiple motors. Mech. Syst. Signal Process. 64–65, 1–15 (2015)

    Google Scholar 

  99. L. De Novellis, A. Sorniotti, P. Gruber, Wheel torque distribution criteria for electric vehicles with torque-vectoring differentials. IEEE Trans. Vehicle Technol. 63(4), 1593–1602 (2014)

    Google Scholar 

  100. T. Goggia, A. Sorniotti, L. De Novellis, A. Ferrara, et al., Integral sliding mode for the torque-vectoring control of fully electric vehicles: Theoretical design and experimental assessment. IEEE Trans. Vehicle Technol. 64(5), 1701–1715 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Sorniotti .

Editor information

Editors and Affiliations

Appendix: Definitions of Invariant Sets, Minkowski Sum ⊕, and Pontryagin Difference ⊖

Appendix: Definitions of Invariant Sets, Minkowski Sum ⊕, and Pontryagin Difference ⊖

The following definitions are provided:

  1. (a)

    Reachable set for systems with external inputs. Consider a system ξ k + 1 = f(ξ k, u k) + w k, with ξ k ∈ Ξ, \( {u}_k\mathcal{\in}\mathcal{U} \), \( {w}_k\mathcal{\in}\mathcal{W} \). The one-step robust reachable set from a given set of states \( \mathcal{S} \) is \( \mathrm{Reac}{\mathrm{h}}_{\text{f}}\left(\mathcal{S},\mathcal{W}\right)\triangleq \big\{\xi \in {\mathbb{R}}^n|\linebreak {\xi}_0\mathcal{\in}\mathcal{S}, \mathcal{\exists}u\in \mathcal{U},\mathcal{\exists}w\in \mathcal{W}:\xi =f\left({\xi}_0,u,w\right)\big\} \);

  2. (b)

    Robust positively invariant set. A set \( \mathcal{Z}\mathcal{\subseteq}\Xi \) is said to be a robust positively invariant set for the autonomous system ξ k + 1 = f a(ξ k) + w k, with ξ k ∈ Ξ and \( {w}_k\mathcal{\in}\mathcal{W} \), if \( {\xi}_0\mathcal{\in}\mathcal{Z}\mathcal{\Rightarrow}{\xi}_k\mathcal{\in}\mathcal{Z} \), \( \forall {w}_k\mathcal{\in}\mathcal{W},\mathcal{\forall}k\ge \in {\mathbb{N}}^{+} \)

  3. (c)

    Minimal robust positively invariant set. The set \( {\mathcal{Z}}_{\mathit{\infty}}\subseteq \Xi \) is the minimal robust positively invariant set for the defined autonomous system, if \( {\mathcal{Z}}_{\mathit{\infty}} \)is a robust positively invariant set and \( {\mathcal{Z}}_{\mathit{\infty}} \) is contained in every closed robust positively invariant set in Ξ (see [89] for the details)

  4. (d)

    Minkowski sum. The Minkowski sum of two polytopes, and \( \mathfrak{H} \), is the polytope \( \mathfrak{\wp}\mathfrak{\bigoplus}\mathfrak{H}:= \left\{x+h\in {\mathbb{R}}^n|x\in \mathit{\wp},h\in \mathfrak{H}\right\} \);

  5. (e)

    Pontryagin difference. The Pontryagin difference of two polytopes, and \( \mathfrak{H} \), is the polytope \( \mathit{\wp}\ominus \mathfrak{H}:= \left\{x\in {\mathbb{R}}^n|x+h\in \mathit{\wp},\forall h\in \mathfrak{H}\right\} \).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sorniotti, A., Barber, P., De Pinto, S. (2017). Path Tracking for Automated Driving: A Tutorial on Control System Formulations and Ongoing Research. In: Watzenig, D., Horn, M. (eds) Automated Driving. Springer, Cham. https://doi.org/10.1007/978-3-319-31895-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31895-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31893-6

  • Online ISBN: 978-3-319-31895-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics