Skip to main content

Autonomous Vehicle Platooning and Motion Control

Overview on Models and Control Approaches? Features and Characters

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems (ICEERE 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 681))

Abstract

This note presents an overview of the modeling and control strategies on vehicle platooning of road vehicles and focuses specifically on the modeling and control strategies. In general, independent (simplified) vehicle models are related and coupled only through the control laws. The control problem is then studied and several strategies are considered (local, global and mixed) in literature.

The modeling approach that we prefer is the one of robotics considering the geometric, the kinematic and the dynamic models. Several models exist in literature [1,2,3,4]. The use of nonlinear robust approaches gives a better controllability of the fleet and more robust behavior against uncertainties and modeling errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.electricmobilityeurope.eu/projects/.

References

  1. Polack P, d’Andréa Novel B, De La Fortelle A, Menhour L (2016) Cohérence entre la modélisation et les objectifs de contrôle pour les véhicules autonomes. In: 20ème Congrès national sur la Reconnaissance des Formes et l’Intelligence Artificielle (RFIA 2016), Clermont-Ferrand, France, June 2016. https://hal-mines-paristech.archives-ouvertes.fr/hal-01473160

  2. Guillet A, Lenain R, Thuilot B, Martinet P (2014) Adaptable robot formation control: adaptive and predictive formation control of autonomous vehicles. IEEE Rob Autom Mag 21(1):28–39

    Article  Google Scholar 

  3. M’Sirdi NK (2018) Vehicle platooning: an overview on modelling and control approaches. In: International conference on applied smart systems (ICASS 2018), Medea University

    Google Scholar 

  4. Nouveliere L, Marie JS, Mammar S, M’Sirdi NK (2002) Controle longitudinal de véhicules parcommande sous optimale. In: CIFA 2002, Nantes Juillet, pp 906–911

    Google Scholar 

  5. Ali A, Garcia G, Martinet P (2015) Urban platooning using a flatbed tow truck model. In: Intelligent vehicles symposium (IV). IEEE, pp 374–379

    Google Scholar 

  6. Avanzini P (2010) Modélisation et commande d’un convoi de véhicules urbains par vision. Ph.D. dissertation, Université Blaise Pascal-Clermont-Ferrand II

    Google Scholar 

  7. Yazbeck J (2014) Accrochage immatériel sûr et précis de véhicules automatiques. Ph.D. dissertation, Université de Lorraine

    Google Scholar 

  8. Figueiredo L, Jesus I, Machado JAT, Ferreira JR, de Carvalho JLM (2001) Towards the development of intelligent transportation systems. In: ITSC 2001, 2001 IEEE intelligent transportation systems. Proceedings (Cat. No.01TH8585), pp 1206–1211

    Google Scholar 

  9. Tomizuka M (1997) Automated highway systems - an intelligent transportation system for the next century. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, June 1997, p 1

    Google Scholar 

  10. Binding C, Gantenbein D, Jansen B, Sundström O, Bach Andersen P, Marra F, Poulsen B, Træholt C (2010) Electric vehicle fleet integration in the danish edison project - a virtual power plant on the island of bornholm. In: IEEE PES general meeting, pp 1–8

    Google Scholar 

  11. Enkelmann W (2003) Fleetnet - applications for inter-vehicle communication. In: IEEE IV2003 intelligent vehicles symposium. Proceedings (Cat. No. 03TH8683), pp 162–167

    Google Scholar 

  12. Swaroop D (1994) String stability of interconnected systems: an application to platooning in AHS. Ph.D. dissertation, University of California at Berkeley (1994)

    Google Scholar 

  13. Yanakiev D, Kanellakopoulos I (1996) A simplified framework for stringstability analysis in AHS1. IFAC Proc Vol 29(1):7873–7878

    Article  Google Scholar 

  14. Mu’azu JM, Sudin S, Mohamed Z, Yusuf A, Usman AD, Hassan AU (2017) An improved topology model for two-vehicle look-ahead and rear-vehicle convoy control. In: IEEE 3rd international conference on electro-technology for national development (NIGERCON), vol 6

    Google Scholar 

  15. Contet JM, Gechter F, Gruer P, Koukam A (2009) Bending virtual spring-damper: a solution to improve local platoon control. In: International conference on computational science. Springer, pp 601–610

    Google Scholar 

  16. Avanzini P, Thuilot B, Martinet P (2010) Accurate platoon control of urban vehicles, based solely on monocular vision. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 6077–6082

    Google Scholar 

  17. Xiang J, Bräunl T (2010) String formations of multiple vehicles viapursuit strategy. IET Control Theory Appl 4(6):1027–1038

    Article  MathSciNet  Google Scholar 

  18. Ricardo C, Aguiar AP, Gaspar J (2008) Control of unicycle type robots tracking, path following and point stabilization. In: Proceedings of IV Jornadas de Engenharia Electrónica e Telecomunicações e de Computadores. Lisbon Portugal, pp 180–185

    Google Scholar 

  19. Martinez JJ, Avila JC, de Wit CC (2004) A new bicycle vehicle model with dynamic contact friction. IFAC Proc Vol 37(22):625–630. iFAC Symposium on Advances in Automotive Control 2004, Salerno, Italy, 19–23 April 2004. http://www.sciencedirect.com/science/article/pii/S1474667017304135

  20. Sprinkle J, Eklund JM, Gonzalez H, Grotli E, Sanketi P, Moser M (2008) Recovering models of a four-wheel vehicle using vehicular system data. EECS Department, University of California, Berkeley, Technical report, UCB/EECS-2008-92, August 2008. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-92.html

  21. Daviet P, Parent M (1996) Longitudinal and lateral servoing of vehicles in a platoon. In: Intelligent vehicles symposium, proceedings of the1996 IEEE. IEEE, pp 41–46

    Google Scholar 

  22. Khatir ME, Davidson E (2005) Decentralized control of a large platoon of vehicles operating on a plane with steering dynamics. In: Proceedings of the american control conference. IEEE, pp 2159–2165

    Google Scholar 

  23. Bascetta L, Cucci DA, Matteucci M (2016) Kinematic trajectory tracking controller for an all-terrain ackermann steering vehicle. IFAC-PapersOnLine 49(15):13–18. 9th IFAC Symposium on Intelligent Autonomous Vehicles IAV 2016. http://www.sciencedirect.com/science/article/pii/S2405896316308606

  24. Zin A, Sename O, Dugard L (2004) Luca bascetta and davide a. cucci and matteo matteucci. IFAC ProceedingsLuca Bascetta and Davide A. Cucci and Matteo Matteucci lumes 37(22):619–624. iFAC Symposium on Advances in Automotive Control 2004, Salerno, Italy, 19–23 April 2004. http://www.sciencedirect.com/science/article/pii/S1474667017304123

  25. Song L, Guo H, Wang F, Liu J, Chen H (2017) Model predictive control oriented shared steering control for intelligent vehicles. In: 29th Chinese Control and decision conference (CCDC). IEEE, pp 7568–7573

    Google Scholar 

  26. Huang C, Naghdy F, Du H (2016) Model predictive control based lane change control system for an autonomous vehicle. In: Region 10 conference (TENCON) 2016 IEEE. IEEE, pp 3349–3354

    Google Scholar 

  27. Rabhi A (2005) Estimation de la dynamique du véhicule en interaction avec son environnement. Ph.D. dissertation, Versailles-St Quentin en Yvelines

    Google Scholar 

  28. DeSantis R (1995) Path-tracking for car-like robots with single and doublesteering. IEEE Trans Veh Tech 44(2):366–377

    Article  Google Scholar 

  29. Chebly A (2017) Trajectory planning and tracking for autonomous vehicles navigation. Ph.D. dissertation, Université de Technologie de Compiègne

    Google Scholar 

  30. Cartade P, Lenain R, Thuilot B, Berducat M (2012) Algorithmes pour la commande d’une formation de robots mobiles. In: Conférence Internationale Francophone d’Automatique (CIFA2012) Grenoble, France. 4–6 Juillet 2012. IEEE, pp 2159–2165

    Google Scholar 

  31. Lenain R (2005) Contribution à la modélisation et à la commande de robots mobiles en présence de glissement: application au suivi de trajectoire pour les engins agricoles. Ph.D. dissertation, Université Blaise Pascal-Clermont-Ferrand II

    Google Scholar 

  32. Cordesses L (2000) Commande de robots holonomes et non holonomes. application au guidage d’engins agricoles par gps. Ph.D. dissertation, Université Blaise Pascal - Clermont II

    Google Scholar 

  33. Petrov P (2009) Nonlinear adaptive control of a two-vehicle convoy. OpenCybernetics Syst J 3:70–78

    MathSciNet  Google Scholar 

  34. Caicedo, R.E., Valasek, J., Junkins, J.L.: Preliminary results of one-dimensional vehicle formation control using a structural analogy. In: Proceedings of the American Control Conference, 2003, vol. 6, pp. 4687–4692. IEEE (2003)

    Google Scholar 

  35. M’Sirdi, N.K., Rabhi, A., Naamane, A.: Vehicle models and estimation of contact forces and tire road friction. In: ICINCO 2007, Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation 1, Angers, France, 9–12 May 2007, pp. 351–358 (2007)

    Google Scholar 

  36. Qian, X., de La Fortelle, F.A.A., Moutarde, F.: A distributed model predictive control framework for road-following formation control of car-like vehicles. arXiv:1605.00026v1 [cs.RO] 29 April 2016 (2016)

  37. Sheikholeslam, S., Desoer, C.A.: Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: A system level study. IEEE Trans. Veh. Technol. 42(4), 546–554 (1993)

    Google Scholar 

  38. Nadji, M.: Adequation de la dynamique de vehicule a la geometrie des virages routiers: apport a la securitere. Ph.D. thesis, Villeurbanne, INSA 2007

    Google Scholar 

Download references

Acknowledgment

Many thanks to the ICEERE committee for the invitation to give this invited conference, namely Hajji Bekkai and Abdelhamid Rahi. I would like to thank also the colleagues and friends who interested by this point of vues gave suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacer K. M’Sirdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

M’Sirdi, N.K. (2021). Autonomous Vehicle Platooning and Motion Control. In: Hajji, B., Mellit, A., Marco Tina, G., Rabhi, A., Launay, J., Naimi, S. (eds) Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems. ICEERE 2020. Lecture Notes in Electrical Engineering, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-15-6259-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6259-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6258-7

  • Online ISBN: 978-981-15-6259-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics