Skip to main content
Log in

Online Testable Approaches in Reversible Logic

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

We present an overview and analysis of existing work in the design of online testable reversible logic circuits, as well as propose new approaches for the design of such circuits. We explain how previously proposed approaches are unnecessarily high in overhead and in many cases do not provide adequate fault coverage. Proofs of the correctness of our approaches are provided, and discussions of the advantages and disadvantages of each design approach are given. Experimental results comparing our approaches to existing work are presented as well. Both approaches that we propose have better fault coverage and significantly lower overheads than previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Arabzadeh M, Saeedi M, Zamani M (2010) Rule-based optimization of reversible circuits. In: Proceedings of Asia and South Pacific design automation conference (ASPDAC), pp 849–854

  2. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457–3467. doi:10.1103/PhysRevA.52.3457

    Article  Google Scholar 

  3. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532

    Article  MATH  Google Scholar 

  4. Chakraborty A (2005) Synthesis of reversible circuits for testing with universal test set and C-testability of reversible iterative logic arrays. In: Proceedings of the 18th international conference on VLSI design, pp 249–254

  5. Chen J, Zhang X, Wang L, Wei X, Zhao W (2008) Extended Toffoli gate implementation with photons. In: Proceedings of 9th international conference on solid-state and integrated-circuit technology (ICSICT). China, pp 575–578

  6. Desoete B, De Vos A (2002) A reversible carry-look-ahead adder using control gates. Integr VLSI J 33(1):89–104. doi:10.1016/S0167-9260(02)00051-2

    Article  MATH  Google Scholar 

  7. De Vos A (2010) Reversible computing: fundamentals, quantum computing, and applications Chapter 4.5: An application: prototype chips. Wiley-VCH, Weinheim

    Google Scholar 

  8. De Vos A, Rentergem YV (2007) Synthesis of reversible logic for nanoelectronic circuits. Int J Circ Theory Appl 35(3):325–341. doi:10.1002/cta.413. Published online 17 April 2007 in Wiley InterScience (www.interscience.wiley.com)

    Article  Google Scholar 

  9. De Vos A, Burignat SP, Thomsen MK (2012) Reversible implementation of a discrete integer linear transformation. J Mult-Valued Log Soft Comput 18(1):25–35

    MATH  Google Scholar 

  10. Farazmand N, Zamani M, Tahoori MB (2010) Online fault testing of reversible logic using dual rail coding. In: Proceedings of 16th IEEE international on-line testing symposium (IOLTS), pp 204–205

  11. Fazel K, Thornton M, Rice JE (2007) ESOP-based Toffoli gate cascade generation. In: Proceedings of the IEEE Pacific Rim conference on communications, computers and signal processing (PACRIM). Victoria, pp 206–209

  12. Frank MP (2005) Introduction to reversible computing: motivation, progress, and challenges. In: Proceedings of the 2nd conference on computing frontiers. ACM Press, Ischia, pp 385–390

  13. Hayes JP, Polian I, Becker B (2004) Testing for missing-gate faults in reversible circuits. In: Proceedings of the 13th asian test symposium, pp 100–105. doi:10.1109/ATS.2004.84

  14. Ibrahim M, Chowdhury AR, Babu HMH (2008) Minimization of CTS of k-CNOT circuits for SSF and MSF model. In: Proceedings of the IEEE international symposium on defect and fault tolerance of VLSI systems. Boston, pp 290–298

  15. International technology roadmap for semiconductors (itrs) (2009) 2009 executive summary. http://public.itrs.net

  16. Kim S, Chae SI (2005) Implementation of a simple 8-bit microprocessor with reversible energy recovery logic. In: Proceedings of the 2nd conference on computing frontiers. ACM Press, Ischia, pp 421–426

  17. Kole DK, Rahaman H, Das DK (2010) Synthesis of online testable reversible circuit. In: Proceedings of 13th IEEE international symposium on design and diagnostics of electronic circuits and systems (DDECS). Vienna, pp 277–280

  18. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahammad SN, Veezhinathan K (2010) Constructing online testable circuits using reversible logic. IEEE Trans Instrum Meas 59(1):101–109

    Article  Google Scholar 

  20. Maslov D (2012) Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/dmaslov/

  21. Maslov D, Dueck GW, Miller DM, Negrevergne C (2008) Quantum circuit simplification and level compaction. IEEE Trans Comput-Aided Des Integr Circ Syst 27(3):436–444

    Article  Google Scholar 

  22. Merkle RC (1993) Reversible electronic logic using switches. Nanotechnology 4(1):21–40

    Article  Google Scholar 

  23. Miller D, Wille R, Sasanian Z (2011) Elementary quantum gate realizations for multiple-control toffoli gates. In: Proceedings of the 41st IEEE international symposium on multiple-valued logic (ISMVL), pp 288–293. doi:10.1109/ISMVL.2011.54

  24. Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: Proceedings of the 40th annual design automation conference (DAC), pp 318–323

  25. Mohammadi M, Eshghi M (2009) On figures of merit in reversible and quantum logic designs. Quantum Inf Process 8:297–318. doi:10.1007/s11128-009-0106-0. http://portal.acm.org/citation.cfm?id=1555567.1555601

    Article  MathSciNet  MATH  Google Scholar 

  26. Moore GE (1975) Progress in digital integrated electronics. In: Technical digest 1975 IEEE international electron devices meeting, pp 11–13

  27. Nayeem NM, Rice JE (2011) Online fault detection in reversible logic. In: Proceedings of the IEEE international symposium on defect and fault tolerance in VLSI systems (DFT). Vancouver, pp 426–434

  28. Nayeem NM, Rice JE (2011) A shared-cube approach to ESOP-based synthesis of reversible logic. Facta Univ Ser Electron Energ 24(3):385–402

    Article  Google Scholar 

  29. Nayeem NM, Rice JE (2011) A simple approach for designing online testable reversible circuits. In: Proceedings of the IEEE pacific rim conference on communications, computers and signal processing (PACRIM). Victoria, Canada, pp 85–90

    Google Scholar 

  30. Nielsen M, Chuang I (2000) Quantum Computation and Quantum Information. Cambridge University Press

  31. Patel KN, Hayes JP, Markov IL (2004) Fault testing for reversible circuits. IEEE Trans Comput Aided Des Integr Circ Syst 23(8):1220–1230

    Article  Google Scholar 

  32. Picton P (1991) Optoelectronic, multivalued, conservative logic. Int J Opt Comput 2:19–29

    Google Scholar 

  33. Polian I, Hayes JP, Fiehn T, Becker B (2005) A family of logical fault models for reversible circuits. In: Proceedings of the 14th Asian test symposium (ATS), Calcutta, pp 422–427

  34. Rahaman H, Kole DK, Das DK, Bhattacharya BB (2008) On the detection of missing-gate faults in reversible circuits by a universal test set. In: Proceedings of the 21st international conference on VLSI design, pp 163–168. doi:10.1109/VLSI.2008.106

  35. Rice JE (2013) An overview of fault models and testing approaches for reversible logic. In: Submitted to the 2013 pacific rim conference on computers, communications, and signal processing

  36. Rice JE, Suen V (2010) Using autocorrelation coefficient-based cost functions in ESOP-based Toffoli gate cascade generation. In: Proceedings of 23rd canadian conference on electrical and computer engineering (CCECE), Calgary, pp 1–6

  37. Sanaee Y, Dueck GW (2010) ESOP-based Toffoli network generation with transformations. In: Proceedings of 40th IEEE international symposium on multiple-valued logic, pp 276–281

  38. Sentovich E, Singh K, Lavagno L, Moon C, Murgai R, Saldanha A, Savoj H, Stephan P, Brayton RK, Sangiovanni-Vincentelli AL (1992) Sis: A system for sequential circuit synthesis. In: Tech Rep UCB/ERL M92/41, EECS Department. University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html. Software downloaded Mar. 2012 from http://web.cecs.pdx.edu/alanmi/research/soft/softPorts.htm; documentation accessed at http://embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm

    Google Scholar 

  39. Shende VV, Prasad AK, Markov IL, Hayes JP (2003) Synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circ Syst 22(6):710–722

    Article  Google Scholar 

  40. Thapliyal H, Vinod AP (2007) Designing efficient online testable reversible adders with new reversible gate. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS). New Orleans, pp 1085–1088

  41. Vasudevan DP, Lala PK, Jia D, Parkerson JP (2006) Reversible logic design with online testability. IEEE Trans Instrum Meas 55(2):406–414

    Article  Google Scholar 

  42. Wang L, Wu C, Wen X (eds) (2006) VLSI test principles and architectures: design for testability. Morgan Kaufmann

  43. Wille R, Drechsler R (2010) BDD-based synthesis of reversible logic. Int J Appl Metaheuristic Comput (IJAMC) 1(4):25–41. doi:10.4018/jamc.2010100102

    Article  Google Scholar 

  44. Wille R, Große D, Teuber L, Dueck GW, Drechsler R (2008) RevLib: An online resource for reversible functions and reversible circuits. In: Proceedings of 38th international symposium on multiple valued logic, pp 220–225. RevLib is available at http://www.revlib.org

  45. Wille R, Keszȯcze O, Drechsler R (2011) Determining the minimal number of lines for large reversible circuits. In: Design, automation test in Europe conference exhibition (DATE), 2011, pp 1–4. doi:10.1109/DATE.2011.5763314

  46. Zhong J, Muzio JC (2006) Analyzing fault models for reversible logic circuits. In: Proceedings of IEEE congress on evolutionary computation (CEC). Vancouver, pp 2422–2427

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Rice.

Additional information

Responsible Editor: B. B. Bhattacharya

This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayeem, N.M., Rice, J.E. Online Testable Approaches in Reversible Logic. J Electron Test 29, 763–778 (2013). https://doi.org/10.1007/s10836-013-5399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-013-5399-3

Keywords

Navigation