Skip to main content

An Online Testing Technique for the Detection of Control Nodes Displacement Faults (CNDF) in Reversible Circuits

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1687))

Included in the following conference series:

  • 735 Accesses

Abstract

With the advancements of Quantum Computing and its implementing technologies like NMR, IoN trap, the necessity of constructing fault-free quantum circuit is observed. But in way to ensure fault-free circuit, appropriate testing model to be invoked and here in this paper we present an online testing technique that effectively detects control node displacement fault (CNDF) in quantum circuit designed with reversible gates.

Our testing approach involves two steps. In the very first step, the input circuit is transformed to its corresponding testable design by appending additional gates and lines (auxiliary lines). Next, appropriate test vectors are generated and subsequently are applied to find possible node displacement faults in the circuit. The proposed online testing approach is suitable for all type of quantum circuits built with reversible gates (MCT gates). More interestingly, some small changes in the design turn this scheme very effective for ESOP based representation as well. We have extensively tested our approach over a large spectrum of benchmarks and comparison with existing testing algorithms is also summarized in the result tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharjee, A., Bandyopadhyay, C., Niemann, P., Mondal, B., Drechsler, R., Rahaman, H.: An improved heuristic technique for nearest neighbor realization of quantum circuits in 2D architecture. Integration 76, 40–54 (2021)

    Article  Google Scholar 

  2. Niemann, P., Bandyopadhyay, C., Drechsler, R.: February. Combining SWAPs and remote toffoli gates in the mapping to IBM QX architectures. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 200–205. IEEE (2021)

    Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  5. Haffner, H., et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  Google Scholar 

  6. Laforest, M., et al.: Using error correction to determine the noise model. Phys. Rev. A 75, 133–137 (2007)

    Article  Google Scholar 

  7. Ghosh, J., et al.: High-fidelity CZ gate for resonator based superconducting quantum computers. Phys. Rev. A 87, 022309 (2013)

    Article  Google Scholar 

  8. Veldhorst, M., et al.: A two qubit logic gate in silicon. Nature 526, 410–414 (2015)

    Article  Google Scholar 

  9. Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  Google Scholar 

  10. Fazel, K., Thornton, M., Rice, J., E.: ESOP-based Toffoli gate cascade generation. In IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209. Citeseer (2007)

    Google Scholar 

  11. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In DAC 2009, 270–275 (2009)

    Google Scholar 

  12. Gupta, P.A., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IBM Res. Develop. 25(11), 2317–2329 (2006)

    Google Scholar 

  13. Hayes, J.P., Polian, I., Becker, B.: Testing for missing-gate faults in reversible circuits. In IEEE Asian Test Symposium, pp. 100–105 (2004)

    Google Scholar 

  14. Perkowski, M., Biamonte, J., Lukac, M.: Test generation and fault localization for quantum circuits. In International Symposium on Multi-Valued Logic, pp. 62–68 (2005)

    Google Scholar 

  15. Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. In IEEE VLSI Test Symposium, pp. 410–416 (2003)

    Google Scholar 

  16. Kole, D.K., Rahaman, H., Das, D.K., Bhattacharya, B.B.: Derivation of optimal test set for detection of multiple missing-gate faults in reversible circuits. In IEEE Asian Test Symposium, pp.33–38 (2010)

    Google Scholar 

  17. Zamani, M., Tahoori, M.B., Chakrabarty, K.: Ping-pong test: Compact test vector generation for reversible circuits. In IEEE VLSI Test Symposium, pp. 164–169 (2012)

    Google Scholar 

  18. Ramasamy, K., Tagare, R., Perkins, E., Perkowski, M.: Fault localization in reversible circuits is easier than for classical circuits. In IEEE Asian Test Symposium (2004)

    Google Scholar 

  19. Mondal, B., Kole, D.K., Das, D.K., Rahaman, H.: Generator for Test Set Construction of SMGF in Reversible Circuit by Boolean Difference method. In IEEE 23rd Asian Test Symposium, pp. 68–73 (2014)

    Google Scholar 

  20. Rahaman, H., Kole, D.K., Das, D.K., Bhattacharya, B.B.: Fault diagnosis in reversible circuits under missing-gate fault model. Comput. Electr. Eng. 37(4), 475–485 (2011)

    Article  MATH  Google Scholar 

  21. Mahammad, S.N., Hari, S.K., Shroff, S., Kamakoti, V.: Constructing online testable circuits using reversible logic. In International Symposium on VLSI Design and Test, pp. 373–383 (2006)

    Google Scholar 

  22. Vasudevan, D.P., Lala, P.K., Jia, D., Parkerson, J.P.: Online testable reversible logic circuit design using NAND blocks. In International Symposium on Defect and Fault-Tolerance in VLSI Systems, pp. 324–331 (2004)

    Google Scholar 

  23. Vasudevan, D.P., Lala, P.K., Jia, D., Parkerson, J.P.: Reversible logic design with online testability. IEEE Trans. Instrum. Measur. 55, 406–414 (2006)

    Article  Google Scholar 

  24. Kole, D.K., Rahaman, H., Das, D.K.: Synthesis of Online Testable Reversible Circuit. In International Symposium on Design and Diagnostic of Electronic Circuits and Systems, pp. 277–280 (2010)

    Google Scholar 

  25. Feynman, R.: Quantum mechanical computers. In Foundations of Physics, pp. 507–531 (1986)

    Google Scholar 

  26. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_104

    Chapter  Google Scholar 

  27. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mondal, B., Bhattacharjee, A., Bandyopadhyay, C., Rahaman, H.: An approach for detection of node displacement fault (NDF) in reversible circuit. In IEEE Symposium on VLSI Design and Test, pp. 605–616 (2019)

    Google Scholar 

  29. Wille, R., Grosse, D., Teuber, L., Dueck, G., W., Drechsler, R.: Revlib: An online resource for reversible functions and reversible circuits. In 38th ISMVL, pp. 220–225 (2008)

    Google Scholar 

  30. Farazmand, M., Zamani, M., Tahoori, M.B.: Online fault testing of reversible logic using dual rail coding. In Proceedings of International On-Line Testing Symposium, pp. 204–205 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mondal, B., Kar, U.N., Bandyopadhyay, C., Roy, D., Rahaman, H. (2022). An Online Testing Technique for the Detection of Control Nodes Displacement Faults (CNDF) in Reversible Circuits. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics