Skip to main content
Log in

A micro-scaled graphene-based tree-shaped wideband printed MIMO antenna for terahertz applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A tree-shaped graphene-based microstrip multiple-input and multiple-output (MIMO) antenna for terahertz applications is proposed. The proposed MIMO antenna is designed on a 600 × 300 μm2 polyimide substrate. The designed MIMO antenna provides a wide impedance bandwidth of 88.14% (0.276–0.711 THz) due to the suggested modifications in the antenna configuration. The MIMO design parameters like total active reflection coefficient (TARC), mean effective gain (MEG), envelope correlation coefficient (ECC) and diversity gain (DG), channel capacity loss (CCL) are evaluated, and their values are found within acceptable limits. The proposed MIMO structure offers MEG ≤ − 3.0 dB, TARC ≤ − 10.0 dB, DG ≈ 10 dB, CCL < 0.5 bps/Hz/s and ECC < 0.01 at the resonant frequency. At the resonant frequency, the isolation between the radiating elements of the proposed MIMO antenna is recorded as − 52 dB. The variations in operating frequency and S-parameters are also analyzed as a function of the chemical potential (μc) of the graphene material. The parametric analysis, structural design evolution steps, surface current distribution, antenna characteristics parameters and diversity parameters are discussed in detail in this paper. The designed MIMO antenna is suitable for high-speed short-distance communication, video-rate imaging, biomedical imaging, sensing and security scanning in the THz frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cisco: Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017–2022 white paper. Comput. Fraud Secur., 3–5 (2019)

  2. Varshney, G., Giri, P.: Bipolar charge trapping for absorption enhancement in a graphene-based ultrathin dual-band terahertz biosensor. Nanoscale Adv. (2021). https://doi.org/10.1039/d1na00388g

    Article  Google Scholar 

  3. Ying, Z.: Antennas in cellular phones for mobile communications. Proc. IEEE 100, 2286–2296 (2012). https://doi.org/10.1109/JPROC.2012.2186214

    Article  Google Scholar 

  4. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013). https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  5. Singh, R., Lehr, W., Sicker, D., Huq, K.M.S.: Beyond 5G: the role of THz spectrum. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3426810

    Article  Google Scholar 

  6. Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014). https://doi.org/10.1016/j.phycom.2014.01.006

    Article  Google Scholar 

  7. Khan, M.S., Varshney, G., Giri, P.: Altering the multimodal resonance in ultrathin silicon ring for tunable THz biosensing. IEEE Trans. Nanobiosci. (2021). https://doi.org/10.1109/TNB.2021.3105561. (Accepted)

    Article  Google Scholar 

  8. He, Y., Chen, Y., Zhang, L., Wong, S.W., Chen, Z.N.: An overview of terahertz antennas. China Commun. 17, 124–165 (2020). https://doi.org/10.23919/J.CC.2020.07.011

    Article  Google Scholar 

  9. Krishna, C.M., Das, S., Nella, A., Lakrit, S., Madhav, B.T.P.: A micro-sized rhombus-shaped THz antenna for high-speed short-range wireless communication applications. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01472-z

    Article  Google Scholar 

  10. Gao, M., Li, K., Kong, F., Zhuang, H., Zhu, G.: Graphene-based composite right/left-handed leaky-wave antenna at terahertz. Plasmonics 15, 1199–1204 (2020). https://doi.org/10.1007/s11468-020-01130-w

    Article  Google Scholar 

  11. Varshney, G.: Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology 31, 135208 (2020). https://doi.org/10.1088/1361-6528/ab60cc

    Article  Google Scholar 

  12. Design and implementation of miniaturized wideband microstrip patch antenna for high‑speed terahertz applications.pdf (2021)

  13. Shamim, S.M., Das, S., Hossain, M.A., Madhav, B.T.P.: Investigations on graphene-based ultra-wideband (UWB) microstrip patch antennas for terahertz (THz) applications. Plasmonics 16, 1623–1631 (2021). https://doi.org/10.1007/s11468-021-01423-8

    Article  Google Scholar 

  14. Zhou, M.M., Cheng, Y.J.: D-band high-gain circular-polarized plate array antenna. IEEE Trans. Antennas Propag. 66, 1280–1287 (2018). https://doi.org/10.1109/TAP.2018.2796299

    Article  Google Scholar 

  15. Varshney, G.: Tunable terahertz dielectric resonator antenna. SILICON (2020). https://doi.org/10.1007/s12633-020-00577-0

    Article  Google Scholar 

  16. Saurabh, L., Bhatnagar, A., Kumar, S.: Design and performance analysis of bow-tie photoconductive antenna for THz application. In: Proceedings on 2017 International Conference on Intelligent Computing and Control. I2C2 2017, 1–3 Jan 2018 (2018). https://doi.org/10.1109/I2C2.2017.8321808

  17. Khamaisi, B., Jameson, S., Socher, E.: A 210–227 GHz transmitter with integrated on-chip antenna in 90 nm CMOS technology. IEEE Trans. Terahertz Sci. Technol. 3, 141–150 (2013). https://doi.org/10.1109/TTHZ.2012.2236836

    Article  Google Scholar 

  18. Devapriya, A.T., Robinson, S.: Investigation on metamaterial antenna for terahertz applications. J. Microw. Optoelectron. Electromagn. Appl. 18, 377–389 (2019). https://doi.org/10.1590/2179-10742019v18i31577

    Article  Google Scholar 

  19. Wu, K., Cheng, Y.J., Djerafi, T., Hong, W.: Substrate-integrated millimeter-wave and terahertz antenna technology. Proc. IEEE 100, 2219–2232 (2012). https://doi.org/10.1109/JPROC.2012.2190252

    Article  Google Scholar 

  20. Mak, K.M., So, K.K., Lai, H.W., Luk, K.M.: A magnetoelectric dipole leaky-wave antenna for millimeter-wave application. IEEE Trans. Antennas Propag. 65, 6395–6402 (2017). https://doi.org/10.1109/TAP.2017.2722868

    Article  Google Scholar 

  21. Formanek, F., Brun, M.A., Umetsu, T., Omori, S., Yasuda, A.: Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. 94, 8–10 (2009). https://doi.org/10.1063/1.3072357

    Article  Google Scholar 

  22. Varshney, G.: Ultra-wideband antenna using graphite disk resonator for THz. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106480

    Article  Google Scholar 

  23. Ullah, S., Ruan, C., Sadiq, M.S., Haq, T.U., He, W.: Microstrip system on-chip circular polarized (CP) slotted antenna for THz communication application. J. Electromagn. Waves Appl. 34, 1029–1038 (2020). https://doi.org/10.1080/09205071.2020.1770130

    Article  Google Scholar 

  24. Dhillon, A.S., Mittal, D., Sidhu, E.: THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik (Stuttgart) 144, 634–641 (2017). https://doi.org/10.1016/j.ijleo.2017.07.018

    Article  Google Scholar 

  25. Denizhan Sirmaci, Y., Akin, C.K., Sabah, C.: Fishnet based metamaterial loaded THz patch antenna. Opt. Quantum Electron. 48, 1–10 (2016). https://doi.org/10.1007/s11082-016-0449-6

    Article  Google Scholar 

  26. Paul, L.C., Islam, M.M.: Proposal of wide bandwidth and very miniaturized having dimension of μm range slotted patch THz microstrip antenna using PBG substrate and DGS. In: 2017 20th International Conference of Computer and Information Technology. ICCIT 2017. 1–6 Jan 2018 (2018). https://doi.org/10.1109/ICCITECHN.2017.8281766

  27. Anand, S., Kumar, D.S., Wu, R.J., Chavali, M.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik (Stuttgart) 125, 5546–5549 (2014). https://doi.org/10.1016/j.ijleo.2014.06.085

    Article  Google Scholar 

  28. Kushwaha, R.K., Karuppanan, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B Condens. Matter. 545, 107–112 (2018). https://doi.org/10.1016/j.physb.2018.05.045

    Article  Google Scholar 

  29. Hocini, A., Temmar, M.N., Khedrouche, D., Zamani, M.: Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photonics Nanostruct. - Fundam. Appl. 36, 100723 (2019). https://doi.org/10.1016/j.photonics.2019.100723

    Article  Google Scholar 

  30. Nejati, A., Sadeghzadeh, R.A., Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B Condens. Matter. 449, 113–120 (2014). https://doi.org/10.1016/j.physb.2014.05.014

    Article  Google Scholar 

  31. Singh, G.: Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53, 17–22 (2010). https://doi.org/10.1016/j.infrared.2009.08.002

    Article  Google Scholar 

  32. Sharma, A., Singh, G.: Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J. Infrared Millim. Terahertz Waves 30, 1–7 (2009). https://doi.org/10.1007/s10762-008-9416-z

    Article  Google Scholar 

  33. Mahmud, R.H.: Terahertz microstrip patch antennas for the surveillance applications. Kurd. J. Appl. Res. 5, 16–27 (2020). https://doi.org/10.24017/science.2020.1.2

    Article  Google Scholar 

  34. Younssi, M., Jaoujal, A., Diallo, Y., El Moussaoui, A., Aknin, N.: Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2, 369–371 (2013)

    Google Scholar 

  35. Vettikalladi, H., Sethi, W.T., Abas, A.F., Ko, W., Alkanhal, M.A., Himdi, M.: Sub-THz antenna for high-speed wireless communication systems. Int. J. Antennas Propag. 23, 33 (2019). https://doi.org/10.1155/2019/9573647

    Article  Google Scholar 

  36. Varshney, G., Gotra, S., Pandey, V.S., Yaduvanshi, R.S.: Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Commun. Netw. 21, 100246 (2019). https://doi.org/10.1016/j.nancom.2019.05.003

    Article  Google Scholar 

  37. Varshney, G., Verma, A., Pandey, V.S., Yaduvanshi, R.S., Bala, R.: A proximity coupleld wideband graphene antenna with the generation of higher order TM modes for THz application. Opt. Mater. 85, 456–463 (2018)

    Article  Google Scholar 

  38. Okan, T.: High efficiency unslotted ultra-wideband microstrip antenna for sub-terahertz short range wireless communication systems. Optik (Stuttgart) 242, 166859 (2021). https://doi.org/10.1016/j.ijleo.2021.166859

    Article  Google Scholar 

  39. Singh, M., Singh, S., Islam, M.T.: Highly efficient ultra-wide band MIMO patch antenna array for short range THz applications. In: Emerging Trends in Terahertz Engineering and System Technologies (2021)

  40. Hafez, H.A., Kovalev, S., Deinert, J.C., Mics, Z., Green, B., Awari, N., Chen, M., Germanskiy, S., Lehnert, U., Teichert, J., Wang, Z., Tielrooij, K.J., Liu, Z., Chen, Z., Narita, A., Müllen, K., Bonn, M., Gensch, M., Turchinovich, D.: Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018). https://doi.org/10.1038/s41586-018-0508-1

    Article  Google Scholar 

  41. Dakhlaoui, H., Almansour, S., Belhadj, W., Wong, B.M.: Modulating the conductance in graphene nanoribbons with multi-barriers under an applied voltage. Results Phys. 27, 104505 (2021). https://doi.org/10.1016/j.rinp.2021.104505

    Article  Google Scholar 

  42. Rodrigues, N.R.N.M., de Oliveira, R., Dmitriev, V.: Smart terahertz graphene antenna: operation as an omnidirectional dipole and as a reconfigurable directive antenna. IEEE Antennas Propag. Mag. 60, 26–40 (2018). https://doi.org/10.1109/MAP.2018.2859169

    Article  Google Scholar 

  43. Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 1–18 (2008). https://doi.org/10.1063/1.2891452

    Article  Google Scholar 

  44. Bala, R., Marwaha, A.: Characterization of graphene for performance enhancement of patch antenna in THz region. Optik (Stuttgart) 127, 2089–2093 (2016). https://doi.org/10.1016/j.ijleo.2015.11.029

    Article  Google Scholar 

  45. Kazemi, A.H., Mahani, F.F., Mokhtari, A.: Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band. Optik (Stuttgart) 185, 114–120 (2019). https://doi.org/10.1016/j.ijleo.2019.03.033

    Article  Google Scholar 

  46. Abadal, S., Llatser, I., Mestres, A., Lee, H., Alarcon, E., Cabellos-Aparicio, A.: Time-domain analysis of graphene-based miniaturized antennas for ultra-short-range impulse radio communications. IEEE Trans. Commun. 63, 1470–1482 (2015). https://doi.org/10.1109/TCOMM.2015.2406691

    Article  Google Scholar 

  47. Varshney, G., Singh, R., Pandey, V.S., Yaduvanshi, R.S.: Circularly polarized two-port MIMO dielectric resonator antenna. Prog. Electromagn. Res. M. 91, 19–28 (2020)

    Article  Google Scholar 

  48. Vasu Babu, K., Anuradha, B.: Design of inverted L-shape & ohm symbol inserted MIMO antenna to reduce the mutual coupling. AEU - Int. J. Electron. Commun. 105, 42–53 (2019). https://doi.org/10.1016/j.aeue.2019.04.002

    Article  Google Scholar 

  49. Babu, K.V., Anuradha, B., Das, S.: Design & analysis of a dual-band MIMO antenna to reduce the mutual coupling. J. Instrum. 14, P09023 (2019). https://doi.org/10.1088/1748-0221/14/09/P09023

    Article  Google Scholar 

  50. Sree, G.N.J., Nelaturi, S.: Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications. AEU - Int. J. Electron. Commun. 137, 153797 (2021). https://doi.org/10.1016/j.aeue.2021.153797

    Article  Google Scholar 

  51. Nasir, J., Jamaluddin, M.H., Khalily, M., Kamarudin, M.R., Ullah, I., Selvaraju, R.: A reduced size dual port MIMO DRA with high isolation for 4G applications. Int. J. RF Microw. Comput. Eng. 25, 495–501 (2015). https://doi.org/10.1002/mmce.20884

    Article  Google Scholar 

  52. Manteghi, M., Rahmat-samii, Y., Angeles, L.: Broadband characterization of the total active reflection coefficient of multiport antennas. IEEE Proc. (2003). https://doi.org/10.1109/APS.2003.1219779

    Article  Google Scholar 

  53. Gotra, S., Varshney, G., Pandey, V.S., Yaduvanshi, R.S.: Super-wideband multi-input–multi-output dielectric resonator antenna. IET Microw. Antennas Propag. 14, 21–27 (2019). https://doi.org/10.1016/j.jallcom.2008.03.118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vasu Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasu Babu, K., Das, S., Varshney, G. et al. A micro-scaled graphene-based tree-shaped wideband printed MIMO antenna for terahertz applications. J Comput Electron 21, 289–303 (2022). https://doi.org/10.1007/s10825-021-01831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01831-3

Keywords

Navigation