Skip to main content
Log in

Graphene-Based Composite Right/Left-Handed Leaky-Wave Antenna at Terahertz

  • Original Article
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a simple terahertz (THz) leaky-wave antenna (LWA) composed of periodic gapped graphene ribbons and a silicon substrate is presented. The graphene sheets of the antenna operate in an electric field with a resonance distribution of transverse electric (TE) surface plasmon polaritons (SPPs). The THz LWA has both negative and positive propagation constant with the variation of frequencies. Thus, the LWA performs as a composite right/left-handed (CRLH) LWA with backfire-to-endfire beam steering capability in the THz band. The working principle of the THz LWA is analyzed in detail using the theory of dispersion relation formulae and the equivalent CRLH circuit model. The THz LWA is verified by numerical simulations, and the frequency scannable capability of the THz LWA is confirmed. The proposed antenna has great potential applications for the THz LWA of the radiation capability in the entire upper quadrants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kemp MC et al (2003) Security applications of terahertz technology. Proc SPIE 5070(44):44–52

    Article  Google Scholar 

  2. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  4. Wang XC, Zhao WS, Hu J, Yin WY (2015) Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans Nanotechnol 14(1):62–69

    Article  Google Scholar 

  5. Fuscaldo W, Burghignoli P, Baccarelli P, Galli A (2017) Graphene Fabry–Perot cavity leaky-wave antennas: plasmonic versus nonplasmonic solutions. IEEE Trans Antennas Propag 65(4):1651–1660

    Article  Google Scholar 

  6. Esquius-Morote M, Gómez-D’ıaz J, Perruisseau-Carrier J (2014) Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz. IEEE Trans THz Sci Technol 4(1):116–122

    Article  Google Scholar 

  7. Cheng Y, Wu LS, Tang M, Zhang YP, Mao JF (2017) A sinusoidally-modulated leaky-wave antenna with gapped graphene ribbons. IEEE Antennas Wireless Propag Lett 16(99):3000–3004

    Article  Google Scholar 

  8. Li J, He M, Wu C, Zhang C (2017) Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure. IEEE Antennas Wireless Propag Lett 16:1771–1775

    Google Scholar 

  9. Lovat G, Yi D, Burghignoli P, Araneo R, Celozzi S, Wei XC (2018) Theoretical study of the first higher order mode in grounded graphene nanoribbons. IEEE Trans Nanotechnol 17(4):99

    Google Scholar 

  10. Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley, New York

    Book  Google Scholar 

  11. Hon PWC, Tavallaee AA, Chen QS, Williams BS, Itoh T (2012) Radiation model for terahertz transmission-line metamaterial quantum-cascade lasers. IEEE Trans THz Sci Technol 2(3):323–332

    Article  Google Scholar 

  12. Chu DA, Hon PWC, Itoh T, Williams BS (2016) Feasibility of graphene CRLH metamaterial waveguides and leaky wave antennas. J Appl Phys 120(1):013103

    Article  Google Scholar 

  13. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  14. Gómez-D’ıaz J, Perruisseau-Carrier J, Sharma P, Ionescu A (2012) Non-contact characterization of graphene surface impedance at micro and millimeter waves. J Appl Phys 111(11):114908

    Article  Google Scholar 

  15. Correas-Serrano D, Gomez-Diaz J, Perruisseau-Carrier P, Álvarez-Melcón A (2013) Spatially dispersive graphene single and parallel plate waveguides: analysis and circuit model. IEEE Trans Microw Theory Techn 61(12):4333–4344

    Article  Google Scholar 

  16. Sievenpiper D, Zhang LJ, Broas R, Alexópolous NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with forbidden frequency band. IEEE Trans Microw Theory Techn 47(11):2059–2074

    Article  Google Scholar 

  17. Gomez-Diaz J, Mosig JR, Perruisseau-Carrier J (2013) Effect of spatial dispersion on surface waves propagating along graphene sheets. IEEE Trans Antennas Propag 61(7):3589–3596

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61475084) and China Natural Science Foundation of Shandong Province (ZR2017MA039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanmin Kong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Li, K., Kong, F. et al. Graphene-Based Composite Right/Left-Handed Leaky-Wave Antenna at Terahertz. Plasmonics 15, 1199–1204 (2020). https://doi.org/10.1007/s11468-020-01130-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01130-w

Keywords

Navigation