Skip to main content

Micro-sized Graphene-Based UWB Annular Ring Patch Antenna for Short-Range High-Speed Terahertz Wireless Systems

  • Chapter
  • First Online:
Recent Advances in Graphene Nanophotonics

Abstract

Owing to the fascinating features of graphene material, graphene-based patch antennas have quickly attracted attentions in communication technologies for high-speed data transfer in terahertz band. Herein, we present in this chapter a careful study of a new ultra-wide band (UWB) graphene-based plasmonic terahertz (THz) antenna operating in the range of 7.4–8.4 THz, with a huge bandwidth of 1000 GHz. The resonant part of the antenna consists of a modified circular ring patch, designed on 2.4 µm-thick silicon laminate with a high permittivity of 11.9. The resonating frequencies and the antenna operation band can be controllable by adjusting the graphene layers’ chemical potential, where the desired UWB behavior is attained whit a chemical potential of 2 eV. The suggested antenna possesses a super compact geometry of 24 × 24 µm along with attractive radiation behavior in terms of gain (up to 5.5 dB) radiation efficiency (>97%). In addition, a high impedance matching is achieved which contributes in very low reflection coefficient of −53.5 dB. According to the outcomes realized, it can be inferred that the proffered THz antenna would be an excellent solution for various applications in terahertz regime, including the explosive detection, material characterization, homeland defense, security scanning, biomedical imagine, sensing, video rate imaging system and the upcoming short-range high-speed wireless indoor communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, F., Lin, Y., Huang, J., Wu, D., Shi, H., Song, J., Li, Y.: Big data driven mobile traffic understanding and forecasting: a time series approach. IEEE Trans. Serv. Comput. 9(5), 796–805 (2016)

    Google Scholar 

  2. Khabba, A., Wakrim, L., El Ouadi, Z., Amadid, J., Ibnyaich, S., Zeroual, A.: High gain double u-shaped slots microstrip patch antenna array for 28ghz 5g applications. In: 2022 International Conference on Decision Aid Sciences and Applications (DASA), pp. 1589–1592. IEEE (2022)

    Google Scholar 

  3. Khabba, A., Amadid, J., Ibnyaich, S., Zeroual, A.: Pretty-small four-port dual-wideband 28/38 ghz mimo antenna with robust isolation and high diversity performance for millimeter-wave 5g wireless systems. Analog Integr. Circ. Sig. Process 112(1), 83–102 (2022)

    Article  Google Scholar 

  4. Krishna, C.M., Das, S., Nella, A., Lakrit, S., Madhav, B.T.P.: A micro-sized rhombus-shaped thz antenna for high-speed short-range wireless communication applications. Plasmonics 16(6), 2167–2177 (2021)

    Google Scholar 

  5. Khabba, A., Mohapatra, S., Wakrim, L., Ez-zaki, F., Ibnyaich, S., Zeroual, A.: Multiband antenna design with high gain and robust spherical coverage using a new 3d phased array structure for 5g mobile phone mm-wave applications. Analog Integr. Circ. Sig. Process 110(2), 331–348 (2022)

    Article  Google Scholar 

  6. Khabba, A., Amadid, J., Mohapatra, S., El Ouadi, Z., Ahmad, S., Ibnyaich, S., Zeroual, A.: Uwb dual-port self-decoupled o-shaped monopole mimo antenna with small-size easily extendable design and high diversity performance for millimeter-wave 5g applications. Appl. Phys. A 128(8), 1–23 (2022)

    Article  Google Scholar 

  7. Yang, P., Xiao, Y., Xiao, M., Li, S.: 6g wireless communications: Vision and potential techniques. IEEE Netw. 33(4), 70–75 (2019)

    Article  MathSciNet  Google Scholar 

  8. Shafie, A., Yang, G.N., Han, C., Jornet, J.M., Juntti, M., Kurner, T.: Terahertz communications for 6g and beyond wireless networks: challenges, key advancements, and opportunities. IEEE Netw. (2022)

    Google Scholar 

  9. Huq, K.M.S, Rodriguez, J., Otung, I.E.: 3d network modeling for thzenabled ultra-fast dense networks: A 6g perspective. IEEE Commun. Stand. Mag. 5(2), 84–90 (2021)

    Google Scholar 

  10. Yin, X.-X., Baghai-Wadji, A., Zhang, Y.: A biomedical perspective in terahertz nano-communications—a review. IEEE Sens J (2022)

    Google Scholar 

  11. Singh, M., Singh, S.: Design and performance investigation of miniaturized multi-wideband patch antenna for multiple terahertz applications. Photonics Nanostruct. Fundam. Appl. 44, 100900 (2021)

    Article  Google Scholar 

  12. Amin, M., Siddiqui, O., Abutarboush, H., Farhat, M., Ramzan, R.: thz graphene metasurface for polarization selective virus sensing. Carbon 176, 580–591 (2021)

    Google Scholar 

  13. Dong, P., Liu, L., Li, S., Hu, S., Bu, L.: Application of m5 model tree in passive remote sensing of thin ice cloud microphysical properties in terahertz region. Remote Sens 13(13), 2569 (2021)

    Google Scholar 

  14. Li, H., Li, C., Wu, S., Zheng, S., Fang, G.: Adaptive 3d imaging for moving targets based on a simo inisar imaging system in 0.2 Thz band. Remote Sens. 13(4), 782 (2021)

    Google Scholar 

  15. Abdullah-Al-Shafi, M., Akter, N., Sen, S., Hossain, M.S.: Design and performance analysis of background material of zeonex based high core power fraction and extremely low effective material loss of photonic crystal fiber in the terahertz (thz) wave pulse for many types of communication areas. Optik 243, 167519 (2021)

    Google Scholar 

  16. Hasan, M.M., Pandey, T., Habib, M.A.: Highly sensitive hollow-core fiber for spectroscopic sensing applications. Sens. Bio-Sens. Res. 34, 100456 (2021)

    Google Scholar 

  17. Khaleel, S.A., KI Hamad, E., Parchin, N.O., Saleh, M.B.: Mtm-inspired graphene-based thz mimo antenna configurations using characteristic mode analysis for 6g/iot applications. Electronics 11(14), 2152 (2022)

    Google Scholar 

  18. Tassin, P., Koschny, T., Soukoulis, C.M.: Graphene for terahertz applications. Science 341(6146), 620–621 (2013)

    Google Scholar 

  19. Nissiyah, G.J., Madhan, M.G.: Graphene based microstrip antenna for triple and quad band operation at terahertz frequencies. Optik 231, 166360 (2021)

    Google Scholar 

  20. Nissiyah, G.J., Madhan, M.G.: Graphene-based photoconductive antenna structures for directional terahertz emission. Plasmonics 14(4), 891–900 (2019)

    Google Scholar 

  21. Khan, M., Kaium, A., Ullah, M., Kabir, R., Alim, M.A., et al.: High-performance graphene patch antenna with superstrate cover for terahertz band application. Plasmonics 15(6), 1719–1727 (2020)

    Google Scholar 

  22. Nissiyah, G.J., Madhan, M.G.: A narrow spectrum terahertz emitter based on graphene photoconductive antenna. Plasmonics 14(6), 2003–2011 (2019)

    Google Scholar 

  23. Shamim, S., Uddin, M.S., Hasan, M., Samad, M., et al.: Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications. J. Comput. Electron. 20(1), 604–610 (2021)

    Google Scholar 

  24. Dhillon, A.S., Mittal, D., Sidhu, E.: Thz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik 144, 634–641 (2017)

    Google Scholar 

  25. Kushwaha, R.K., Karuppanan, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in thz. Physica B Condens. Matter 545, 07–112 (2018)

    Google Scholar 

  26. Tang, W.X., Zhang, H.C., Ma, H.F., Jiang, W.X., Cui, T.J.: Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater. 7(1), 1800421 (2019)

    Google Scholar 

  27. Wang, Y., Liu, H., Wang, S., Cai, M., Ma, L.: Optical transport properties of graphene surface plasmon polaritons in mid-infrared band. Curr. Comput.-Aided Drug Des. 9(7), 354 (2019)

    Google Scholar 

  28. Dash, S., Patnaik, A.: Impact of silicon-based substrates on graphene thz antenna. Phys. E. 126, 114479 (2021)

    Article  Google Scholar 

  29. Aloui, R., Zairi, H., Mira, F., Llamas-Garro, I., Mhatli, S.:Terahertz antenna based on graphene material for breast tumor detection. Sens. Bio-Sens. Res. 100511 (2022)

    Google Scholar 

  30. Cao, M., Xiong, D.-B., Yang, L., Li, S., Xie, Y., Guo, Q., Li, Z., Adams, H., Gu, J., Fan, T., et al.: Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater. 29(17), 1806792 (2019)

    Google Scholar 

  31. Anand, S., Kumar, D.S., Wu, R.J., Chavali, M.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125(19), 5546–5549 (2014)

    Google Scholar 

  32. Khan, M.A.K., Shaem, T.A., Alim, M.A.: Graphene patch antennas with different substrate shapes and materials. Optik 202, 163700 (2020)

    Google Scholar 

  33. Thampy, A.S., Darak, M.S., Dhamodharan, S.K.: Analysis of graphene based optically transparent patch antenna for terahertz communications. Phys. E Lowdimensional Syst. Nanostruct. 66, 67–73 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Khabba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khabba, A. et al. (2023). Micro-sized Graphene-Based UWB Annular Ring Patch Antenna for Short-Range High-Speed Terahertz Wireless Systems. In: Patel, S.K., Taya, S.A., Das, S., Vasu Babu, K. (eds) Recent Advances in Graphene Nanophotonics. Advanced Structured Materials, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-031-28942-2_10

Download citation

Publish with us

Policies and ethics