Skip to main content
Log in

Quantum chemical study of the effect of π-bridge on the optical and electronic properties of sensitizers for DSSCs incorporating dioxythiophene and thiophene units

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Twelve molecules were theoretically studied through density functional theory with the M06 density functional and the 6-31G(d) basis set. The molecular systems have potential application as sensitizers for dye-sensitized solar cells; these molecular structures are composed of triphenylamine as the donor moiety, different conjugation orders of thiophene and dioxythiophene as the π-bridge, and cyanoacrylic acid as the acceptor moiety. This study focused on the effect of the π-bridge on the properties of interest. Ground-state geometry optimization, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were calculated and analyzed. Absorption wavelengths, vertical energy, oscillator strength, and electron transitions were calculated through time-dependent density functional theory with the M06-2X and CAM-B3LYP functionals using the 6-31G(d) basis set. Driving force of injection (ΔG inj) was calculated and analyzed from the ground-state oxidation potential of the dye and the energy associated with the maximum absorption wavelength. As an important element presented in this study, chemical reactivity parameters are discussed, such as chemical hardness, electrodonating power, electroaccepting power, and electrophilicity index. In conclusion, a reliable methodology was presented and discussed to predict properties in triphenylamine derivative dyes considering the modification of the π-bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duan T, Fan K, Fu Y et al (2012) Dye Pigment 94:28–33

    Article  CAS  Google Scholar 

  2. Feng J, Jiao Y, Ma W et al (2013) J Phys Chem C 117:3772–3778

    Article  CAS  Google Scholar 

  3. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  4. Shen P, Liu Y, Huang X et al (2009) Dye Pigment 83:187–197

    Article  CAS  Google Scholar 

  5. Peng D, Tang G, Hu J et al (2015) Polym Bull 72:653–669

    Article  CAS  Google Scholar 

  6. Ozawa H, Okuyama Y, Arakawa H (2014) ChemPhysChem 15:1201–1206

    Article  CAS  Google Scholar 

  7. Mathew S, Yella A, Gao P et al (2014) Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  8. Zhang M, Wang Y, Xu M et al (2013) Energy Environ Sci 6:2944–2949

    Article  CAS  Google Scholar 

  9. Kakiage K, Aoyama Y, Yano T et al (2015) Chem Commun 51:15894–15897

    Article  CAS  Google Scholar 

  10. Liu W-H, Wu I-C, Lai C-H, et al (2008) Chem Commun 5152-5154

  11. Hagfeldt A, Boschloo G, Sun L et al (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  12. Zhu S, An Z, Chen X et al (2014) RSC Adv 4:42252–42259

    Article  CAS  Google Scholar 

  13. Hwang S, Lee JH, Park C et al (2007) Chem Commun 2007:4887–4889

    Article  Google Scholar 

  14. Tsao M, Wu T, Wang H et al (2011) Mater Lett 65:583–586

    Article  CAS  Google Scholar 

  15. Hara K, Wang Z, Sato T et al (2005) J Phys Chem B 109:15476–15482

    Article  CAS  Google Scholar 

  16. Lim K, Song K, Kang Y, Ko J (2015) Dye Pigment 119:41–48

    Article  CAS  Google Scholar 

  17. Zhang G, Bala H, Cheng Y, et al (2009) Chem Commun (Camb) 2198-2200

  18. Jiang K-J, Manseki K, Yu Y et al (2009) New J Chem 33:1973–1977

    Article  CAS  Google Scholar 

  19. Grisorio R, De Marco L, Agosta R et al (2014) ChemSusChem 7:2659–2669

    Article  CAS  Google Scholar 

  20. Chang YJ, Chow TJ (2009) Tetrahedron 65:4726–4734

    Article  CAS  Google Scholar 

  21. Duan T, Hsiao T-Y, Chi Y et al (2016) Dye Pigment 124:45–52

    Article  CAS  Google Scholar 

  22. Sivanadanam J, Ganesan P, Madhumitha R et al (2015) J Photochem Photobiol A Chem 299:194–202

    Article  CAS  Google Scholar 

  23. Park SS, Won YS, Choi YC, Kim JH (2009) Energy Fuels 23:3732–3736

    Article  CAS  Google Scholar 

  24. Baik C, Kim D, Kang M et al (2009) J Photochem Photobiol A Chem 201:168–174

    Article  CAS  Google Scholar 

  25. Yigit MZ, Bilgili H, Sefer E et al (2014) Electrochim Acta 147:617–625

    Article  CAS  Google Scholar 

  26. Liu J, Yang X, Zhao J, Sun L (2013) RSC Adv 3:15734–15743

    Article  CAS  Google Scholar 

  27. Tiwari A, Pal U (2015) Int J Hydrog Energy 40:9069–9079

    Article  CAS  Google Scholar 

  28. Hagberg D, Edvinsson T, Marinado T et al (2006) Chem Commun 2006:2245–2247

    Article  Google Scholar 

  29. Zhang G, Bala H, Cheng Y et al (2009) Chem Commun 2009:2198–2200

    Article  Google Scholar 

  30. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  31. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  32. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  33. Francl MM, Pietro WJ, Hehre WJ et al (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  34. Rassolov VA, Ratner MA, Pople JA et al (2001) J Comp Chem 22:976–984

    Article  CAS  Google Scholar 

  35. Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123:062206

    Article  Google Scholar 

  36. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  37. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  38. Dev P, Agrawal S, English NJ (2012) J Chem Phys 136:224301

    Article  Google Scholar 

  39. Jacquemin D, Perpète EA, Ciofini I et al (2010) J Chem Theory Comput 6:2071–2085

    Article  CAS  Google Scholar 

  40. Jacquemin D, Planchat A, Adamo C et al (2012) J Chem Theory Comput 8:2359–2372

    Article  CAS  Google Scholar 

  41. Baldenebro-López J, Castorena-González J, Flores-Holguín N et al (2012) Int J Mol Sci 13:4418–4432

    Article  Google Scholar 

  42. Cossi M, Barone V (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  43. Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:054103

    Article  Google Scholar 

  44. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  45. Gorelsky SI, Lever BP (2001) J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  46. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  47. Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970

    Article  Google Scholar 

  48. Parr RG, Szentpály L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09 software Inc. Wallingford, CT

    Google Scholar 

  50. Namuangruk S, Jungsuttiwong S, Kungwan N (2016) Theor Chem Acc 135:14

    Article  Google Scholar 

  51. Nattestad A, Mozer AJ, Fischer MKR et al (2010) Nat Mater 9:31–35

    Article  CAS  Google Scholar 

  52. Joly D, Pellejà L, Narbey S et al (2015) Energy Environ Sci 8:2010–2018

    Article  CAS  Google Scholar 

  53. Cong J, Yang X, Kloo L, Sun L (2012) Energy Environ Sci 5:9180–9194

    Article  CAS  Google Scholar 

  54. Wang Z-S, Yamaguchi T, Sugihara H, Arakawa H (2005) Langmuir 21:4272–4276

    Article  CAS  Google Scholar 

  55. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) J Photochem Photobiol A Chem 236:35–40

    Article  CAS  Google Scholar 

  56. Sun M, Cao Z (2014) Theor Chem Acc 133:1531

    Article  Google Scholar 

  57. Tachibana Y, Hara K, Sayama K, Arakawa H (2002) Chem Mater 14:2527–2535

    Article  CAS  Google Scholar 

  58. Tian H, Yang X, Chen R et al (2008) J Phys Chem C 112:11023–11033

    Article  CAS  Google Scholar 

  59. Yu L, Xi J, Chan HT et al (2013) J Phys Chem C 117:2041–2052

    Article  CAS  Google Scholar 

  60. Wu Y, Marszalek M, Zakeeruddin SM et al (2012) Energy Environ Sci 5:8261–8272

    Article  CAS  Google Scholar 

  61. Barpuzary D, Patra AS, Vaghasiya JV et al (2014) ACS Appl Mater Interfaces 6:12629–12639

    Article  CAS  Google Scholar 

  62. Mehmood U, Hussein I, Harrabi K et al (2015) Int J Photoenergy 2015:286730

    Article  Google Scholar 

  63. Islam A, Sugihara H, Arakawa H (2003) J Photochem Photobiol A Chem 158:131–138

    Article  CAS  Google Scholar 

  64. Ning Z, Zhang Q, Wu W et al (2008) J Org Chem 73:3791–3797

    Article  CAS  Google Scholar 

  65. Sayama K, Tsukagoshi S, Hara K et al (2002) J Phys Chem B 106:1363–1371

    Article  CAS  Google Scholar 

  66. Parr RG, Weitao Y (1994) Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford

    Google Scholar 

  67. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  68. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  69. Nalewajski R (2003) Adv Quantum Chem 43:119–184

    Article  CAS  Google Scholar 

  70. Chattaraj P, Sarkar U, Roy D (2006) Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  71. Gázquez J (1995) Conf Proceedings 342:140–146

    Google Scholar 

  72. Mineva T, Sicilia E, Russo N (1998) J Am Chem Soc 120:9053–9058

    Article  CAS  Google Scholar 

  73. Ayers P, Parr RG (2008) J Chem Phys 128:184108

    Article  Google Scholar 

  74. Chattaraj P (2009) Chemical Reactivity Theory. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by Universidad Autónoma de Sinaloa (UAS) and Consejo Nacional de Ciencia y Tecnología (CONACYT) and Centro de Investigación en Materiales Avanzados, S.C. (CIMAV). T.D.M. gratefully acknowledges a fellowship from CONACYT. J.B.L. and R.S.R. are professors and researchers at UAS and CONACYT. D.G.M. is a researcher at CIMAV and CONACYT. The authors also gratefully acknowledge Rodrigo Domίnguez from CIMAV for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús Baldenebro-López or Daniel Glossman-Mitnik.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Montiel, T., Baldenebro-López, J., Soto-Rojo, R. et al. Quantum chemical study of the effect of π-bridge on the optical and electronic properties of sensitizers for DSSCs incorporating dioxythiophene and thiophene units. Theor Chem Acc 135, 235 (2016). https://doi.org/10.1007/s00214-016-1989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1989-3

Keywords

Navigation