Skip to main content
Log in

A multi scale modeling approach to non-radiative multi phonon transitions at oxide defects in MOS structures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We discuss a novel approach to predict non-radiative multi phonon (NMP) transition rates for oxide defects in semiconductor devices in the context of device reliability. In accordance with NMP theory, the influence of the atomic vibration on the electronic transition is assumed to be fully described by the line shape function. This line shape is calculated from density functional theory for a given defect structure and then combined with the carrier spectrum from a non-equilibrium Green’s function model of the semiconductor device. Hole capture rates at different temperatures and bias conditions are computed for two well-studied defect structures, the oxygen vacancy and the hydrogen bridge, at different positions in the oxide of an MOS structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeppson, K., Svensson, C.: J. Appl. Phys. 48(5), 2004 (1977)

    Article  Google Scholar 

  2. Schroder, D.K.: Microelectron. Reliab. 47, 841 (2007)

    Article  Google Scholar 

  3. Grasser, T., Kaczer, B., Goes, W., Aichinger, T., Hehenberger, P., Nelhiebel, M.: In: Proc. Intl. Rel. Phys. Symp., pp. 33–44 (2009)

    Google Scholar 

  4. Grasser, T., Kaczer, B., Gös, W., Reisinger, H., Aichinger, T., Hehenberger, P., Wagner, P.J., Schanovsky, F., Franco, J., Toledano-Luque, M., Nelhiebel, M.: IEEE Trans. Electron Devices 58(11), 3652 (2011)

    Article  Google Scholar 

  5. Kirton, M., Uren, M.: Appl. Phys. Lett. 48, 1270 (1986)

    Article  Google Scholar 

  6. Grasser, T., Reisinger, H., Wagner, P.J., Kaczer, B.: In: Proc. Intl. Rel. Phys. Symp., pp. 16–25 (2010)

    Google Scholar 

  7. Fleetwood, D., Xiong, H., Lu, Z.Y., Nicklaw, C., Felix, J., Schrimpf, R., Pantelides, S.: IEEE Trans. Nucl. Sci. 49(6), 2674 (2002)

    Article  Google Scholar 

  8. Kaczer, B., Grasser, T., Martin-Martinez, J., Simoen, E., Aoulaiche, M., Roussel, P., Groeseneken, G.: In: Proc. Intl. Rel. Phys. Symp., pp. 55–60 (2009)

    Google Scholar 

  9. Wagner, P., Aichinger, T., Grasser, T., Nelhiebel, M., Vandamme, L.: In: Proc. Intl. Conf. Noise Fluct., pp. 621–624 (2009)

    Google Scholar 

  10. Blöchl, P.E., Stathis, J.H.: Phys. Rev. Lett. 83(2), 372 (1999)

    Article  Google Scholar 

  11. Blöchl, P.E.: Phys. Rev. B 62(10), 6158 (2000)

    Article  Google Scholar 

  12. Huang, K., Rhys, A.: Proc. R. Soc. A 204, 406 (1950)

    Article  MATH  Google Scholar 

  13. Henry, C.H., Lang, D.V.: Phys. Rev. B 15(15), 989 (1977)

    Article  Google Scholar 

  14. Makram-Ebeid, S., Lannoo, M.: Phys. Rev. B 25(10), 6406 (1982)

    Article  Google Scholar 

  15. Palma, A., Godoy, A., Jemènez-Tejada, J.A., Carceller, J.E., Lòpez-Villanueva, J.A.: Phys. Rev. B 56(15), 9565 (1997)

    Article  Google Scholar 

  16. Garetto, D., Randiamihaja, Y.M., Rideau, D., Dornel, E., Clark, W.F., Schmid, A., Huard, V., Jaouen, H., Leblebici, Y.: In: Proc. Intl. Worksh. Comput. Electron., pp. 327–330 (2010)

    Google Scholar 

  17. Zheng, J.H., Tan, H.S., Ng, S.C.: J. Phys., Condens. Matter 6, 1695 (1994)

    Article  Google Scholar 

  18. Grasser, T., Reisinger, H., Goes, W., Aichinger, T., Hehenberger, P., Wagner, P., Nelhiebel, M., Franco, J., Kaczer, B.: In: Proc. Intl. Electron Devices Meeting, pp. 729–732 (2009)

    Google Scholar 

  19. Reisinger, H., Grasser, T., Schlünder, C., Gustin, W.: In: Proc. Intl. Rel. Phys. Symp., pp. 7–15 (2010)

    Google Scholar 

  20. Grasser, T., Reisinger, H., Wagner, P., Kaczer, B.: Phys. Rev. B 82, 245318 (2010)

    Article  Google Scholar 

  21. Schanovsky, F., Goes, W., Grasser, T.: J. Comput. Electron. 9, 135 (2010)

    Article  Google Scholar 

  22. Schanovsky, F.: In: Proc. Intl. Worksh. Comput. Electron., pp. 163–166 (2010)

    Google Scholar 

  23. Schanovsky, F., Goes, W., Grasser, T.: J. Vac. Sci. Technol. B 29, 01A201 (2011)

    Article  Google Scholar 

  24. Schanovsky, F., Baumgartner, O., Grasser, T.: In: Proc. Simu. Semicond. Proc. Dev., pp. 15–18 (2011)

    Google Scholar 

  25. Schenk, A.: J. Appl. Phys. 71, 3339 (1992)

    Article  Google Scholar 

  26. Zapol, B.: Chem. Phys. Lett. 93(6), 549 (1982)

    Article  Google Scholar 

  27. Schmidt, P.P.: Mol. Phys. 108, 1513 (2010)

    Article  Google Scholar 

  28. Abakumov, V., Perel, V., Yassievich, I.: Nonradiative Recombination in Semiconductors. North-Holland, Amsterdam (1991)

    Google Scholar 

  29. Grasser, T.: Microelectron. Reliab. 52(1), 39 (2011). doi:10.1016/j.microrel.2011.09.002

    Google Scholar 

  30. Baumgartner, O., Karner, M., Kosina, H.: In: Proc. Simu. Semicond. Proc. Dev., pp. 353–356 (2008). doi:10.1109/SISPAD.2008.4648310

    Google Scholar 

  31. Kresse, G., Furthmüller, J.: Phys. Rev. B 54(11), 11169 (1996)

    Article  Google Scholar 

  32. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  33. Rudra, J.K., Fowler, W.B.: Phys. Rev. B 35(15), 8223 (1987)

    Article  Google Scholar 

  34. Mysovsky, A.S., Sushko, P.V., Mukhopadhyay, S., Edwards, A.H., Shluger, A.L.: Phys. Rev. B 69(8), 085202 (2004)

    Article  Google Scholar 

  35. Drabold, D.A., Estreicher, S.K. (eds.): Theory of Defects in Semiconductors. Springer, Berlin (2010)

    Google Scholar 

  36. Karner, M., Gehring, A., Holzer, S., Pourfath, M., Wagner, M., Goes, W., Vasicek, M., Baumgartner, O., Kernstock, C., Schnass, K., Zeiler, G., Grasser, T., Kosina, H., Selberherr, S.: J. Comput. Electron. 6, 179 (2007). doi:10.1007/s10825-006-0077-7

    Article  Google Scholar 

  37. Shockley, W., Read, W.T.: Phys. Rev. 87, 835 (1952)

    Article  MATH  Google Scholar 

  38. Schenk, A.: Solid-State Electron. 35, 1585 (1992)

    Article  Google Scholar 

Download references

Acknowledgement

This work has received funding from the EC’s FP7 grant agreement NMP.2010.2.5-1 (MORDRED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schanovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schanovsky, F., Baumgartner, O., Sverdlov, V. et al. A multi scale modeling approach to non-radiative multi phonon transitions at oxide defects in MOS structures. J Comput Electron 11, 218–224 (2012). https://doi.org/10.1007/s10825-012-0403-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0403-1

Keywords

Navigation