Skip to main content

Insights into Vibrational and Electronic Properties of MoS2 Using Raman, Photoluminescence, and Transport Studies

  • Chapter
  • First Online:
MoS2

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 21))

Abstract

We review the relevant vibrational and electronic properties of a single and a few layer MoS2 to understand their resonant and nonresonant Raman scattering results. In particular, the optical modes and low frequency shear and layer breathing modes show significant dependence on the number of MoS2 layers. Further, the electron doping of the MoS2 single layer achieved using top-gating in a field effect transistor renormalizes the two optical modes A 1g and \( E_{2g}^{1} \) differently due to symmetry-dependent electron–phonon coupling. The issues related to carrier mobility, the Schottky barrier at the MoS2–metal contact pads and the modifications of the dielectric environment are addressed. The direct optical transitions for single-layer MoS2 involve two excitons at K-point in the Brillouin zone and their stability with temperature and pressure is reviewed. Finally, the Fermi level dependence of spectral shift for a quasiparticle, called trion, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nature Mat. 6, 183 (2007)

    Article  CAS  Google Scholar 

  2. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Physics 81, 109 (2009)

    Article  CAS  Google Scholar 

  3. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  CAS  Google Scholar 

  4. Rao, C.N.R., Sood, A.K., Voggu, R., Subrahmanyam, K.S.: Some novel attributes of graphene. J. Phys. Chem. Lett. 1, 572–580 (2010)

    Article  CAS  Google Scholar 

  5. Sood. A.K., Chakraborty, B.: Understanding graphene via Raman scattering. Wiley–VCH Verlag GmbH & Co. KGaA, chapter–2, 49–90 (2012)

    Google Scholar 

  6. Das, A., Chakraborty, B., Sood, A.K.: Probing single and bilayer graphene field effect transistors By Raman spectroscopy. Mod. Phys. Lett. B 25, 511–535 (2011)

    Article  CAS  Google Scholar 

  7. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U S A. 102, 10451–10453 (2005)

    Article  CAS  Google Scholar 

  8. Rogers, J.A., Lagally, M.G., Nuzzo, R.G.: Synthesis, assembly and applications of semiconductor nanomembranes. Nature 447, 45–53 (2011)

    Article  Google Scholar 

  9. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  CAS  Google Scholar 

  10. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  CAS  Google Scholar 

  11. Das, S., Chen, H.Y., Penumatcha, A.V., Appenzeller, J.: High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)

    Article  CAS  Google Scholar 

  12. Zhang, W., et al.: Ultrahigh-gain phototransistors based on graphene-MoS2 heterostructures. arXiv:1302.1230 (2013)

    Google Scholar 

  13. Liu, K–.K., et al.: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012)

    Article  CAS  Google Scholar 

  14. Zhou, K.G., Mao, N.N., Wang, H.X., Peng, Y., Zhang, H.L.: A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50, 10839–10840 (2011)

    Article  CAS  Google Scholar 

  15. Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  CAS  Google Scholar 

  16. Coleman, N.J., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    Article  CAS  Google Scholar 

  17. Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M.: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)

    Article  CAS  Google Scholar 

  18. Rao, C.N.R., Nag, A.: Inorganic analogues of graphene. Eur. J. Inorg. Chem. 27, 4244–4250 (2010)

    Article  Google Scholar 

  19. Ramakrishna Matte, H.S.S., Gomathi, A., Manna, A.K., Dattatray, J.L., Ranjan, D., Pati, S.K., Rao, C.N.R.: MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010)

    Article  Google Scholar 

  20. Li, Q., Newberg, J.T., Walter, J.C., Hemminger, J.C., Penner, R.M.: Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbens by electrochemicl/chemical synthesis. Nano Lett. 4, 277–281 (2004)

    Article  CAS  Google Scholar 

  21. Balendhran, S., Ou, J.Z., Bhaskaran, M., Sriram, S., Ippolito, S., Vasic, Z., Kats, E., Bhargava, S., Zhuiykov, S., Kalantar-zadeh, K.: Atomically thin layers of MoS2 via a two step thermal evaporation–exfoliation method. Nanoscale 4, 461–466 (2012)

    Article  CAS  Google Scholar 

  22. Peng, Y., Meng, Z., Zhong, C., Lu, J., Yu, W., Jia, Y., Qian, Y.: Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 8, 772–773 (2001)

    Article  Google Scholar 

  23. Lauritsen, J.V., Kibsgaard, J., Helveg, S., Topsoe, H., Clausen, B.S., Lagsgaard, E., Besenbacher, F.: Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2, 53–58 (2007)

    Article  CAS  Google Scholar 

  24. Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  CAS  Google Scholar 

  25. Rao, C.N.R., Ramakrishna Matte, H.S.S., Subrahmanyama, K.S., Maitra, U.: Unusual magnetic properties of graphene and related materials. Chem. Sci. 3, 45–52 (2012)

    Article  CAS  Google Scholar 

  26. Mathew, S., et al.: Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 101, 102103–102105 (2012)

    Article  Google Scholar 

  27. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically Thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  Google Scholar 

  28. Yao, W., Xiao, D., Niu, Q.: Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406–235407 (2008)

    Article  Google Scholar 

  29. Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012)

    Article  CAS  Google Scholar 

  30. Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., Shan, J.: Tightly bound trions in monolayer MoS2. Nature Mat. 12, 207–211 (2013)

    Article  CAS  Google Scholar 

  31. Radisavljevic, B., Kis, A.: Mobility engineering and metal-insulator transition in monolayer MoS2. arXiv:1301.4947 (2013)

    Google Scholar 

  32. Cao, T., et al.: Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012)

    Article  Google Scholar 

  33. Taniguchi, K., Matsumoto, A., Shimotani, H., Takag, H.: Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2. Appl. Phys. Lett. 101, 042603 (2012)

    Article  Google Scholar 

  34. Roldan, R., Cappelluti, E., Guineal, F.: Interactions and superconductivity in heavily doped MoS2. arXiv:1301.4836 (2013)

    Google Scholar 

  35. Ramana, C.V., Becker, U., Shutthanandan, V., Julien, C.M.: Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics. Geochem. Trans. 9, 8 (2008)

    Article  CAS  Google Scholar 

  36. Bromley, R.A., Murray, R.B., Yoffe, A.D.: The band structures of some transition metal dichalcogenides: III. Group VI A: trigonal prism materials. J. Phys. C: Solid State Phys. 5, 759–778 (1972)

    Article  CAS  Google Scholar 

  37. Mattheiss, L.F.: Energy bands for 2H-NbSe and 2H-MoS2. Phys. Rev. Lett. 30, 784–787 (1973)

    Article  CAS  Google Scholar 

  38. Lebegue, S., Eriksson, O.: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009)

    Article  Google Scholar 

  39. Splendiani, A., et al.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    Article  CAS  Google Scholar 

  40. Li, T., Galli, G.: Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007)

    Article  CAS  Google Scholar 

  41. Molina-Sanchez, A., Wirtz, L.: Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011)

    Article  Google Scholar 

  42. Ataca, C., Topsakal, M., Akturk, E., Ciraci, S.: A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 115, 16354–16361 (2011)

    Article  CAS  Google Scholar 

  43. Verble, J.L., Wieting, T.J.: Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 362–365 (1970)

    Article  CAS  Google Scholar 

  44. Wieting, T.J.: Long-wavelength lattice vibrations of MoS2 and GaSe. Solid State Commun. 12, 931–935 (1973)

    Article  CAS  Google Scholar 

  45. Zhang, X., Han, W.P., Wu, J.B., Milana, S., Lu, Y., Li, Q.Q., Ferrari, A.C., Tan, P.H.: Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 87, 115413 (2013)

    Article  Google Scholar 

  46. Lee, C., et al.: Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)

    Article  CAS  Google Scholar 

  47. Chakraborty, B., Ramakrishna Matte, H.S.S., Sood, A.K., Rao, C.N.R.: Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44, 92–96 (2013)

    Article  CAS  Google Scholar 

  48. Malarda, L.M., Pimentaa, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  Google Scholar 

  49. Wang, Y.Y., Ni, Z.H., Shen, Z.X., Wang, H.M., Wu, Y.H.: Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 92, 043121 (2008)

    Article  Google Scholar 

  50. Zeng, H., Zhu, B., Liu, K., Fan, J., Cui, X., Zhang, Q.M.: Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films. Phys. Rev. B 86:241301(R) (2012)

    Google Scholar 

  51. Tan, P.H., et al.: The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012)

    Article  CAS  Google Scholar 

  52. Benedek, G., Ellis, J., Reichmuth, A., Ruggerone, P., Schief, H., Toennies, J.P.: Organ-pipe modes of sodium epitaxial multilayers on Cu(001) observed by inelastic helium-atom scattering. Phys. Rev. Lett. 69, 2951 (1992)

    Article  CAS  Google Scholar 

  53. Luo, N.S., Ruggerone, P., Toennies, J.P.: Theory of surface vibrations in epitaxial thin films. Phys. Rev. B 54, 5051–5063 (1996)

    Article  CAS  Google Scholar 

  54. Plechinger, G., Heydrich, S., Eroms, J., Weiss, D., Schuller, C., Korn, T.: Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett. 101, 101906 (2012)

    Article  Google Scholar 

  55. Zhao, Y., et al.: Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013)

    Article  CAS  Google Scholar 

  56. Chen, J.M., Wang, C.S.: Second order Raman spectrum of MoS2. Solid State Commun. 14, 857–860 (1974)

    Article  CAS  Google Scholar 

  57. Stacy, A.M., Hodul, D.T.: Raman spectra of IVb and VIb transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 46, 405–409 (1985)

    Article  CAS  Google Scholar 

  58. Sourisseau, C., Cruege, F., Fouassier, M.: Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chem. Phys. 150, 281–293 (1991)

    Article  CAS  Google Scholar 

  59. Frey, G.L., Tenne, T., Matthews, M.J., Dresselhaus, M., Dresselhaus,G.: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60:2883–2892 (1999)

    Google Scholar 

  60. Sekine, T., Uchinokura, K., Nakashizu, T., Matsuura, M., Yoshizaki, R.: Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J. Phys. Soc. Jpn. 53, 811–818 (1984)

    Article  CAS  Google Scholar 

  61. Ghosh, P.N., Maiti, C.R.: Interlayer force and Davydov splitting in 2H-MoS2. Phys. Rev. B 28, 2237–2239 (1983)

    Article  CAS  Google Scholar 

  62. Livneh, T., Sterer, E.: Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 81, 195209 (2010)

    Article  Google Scholar 

  63. Wakabayashi, N., Smith, H.G., Nicklow, R.M.: Lattice dynamics of hexagonal MoS2 studied by neutron scattering. Phys. Rev. B 12, 659–663 (1975)

    Article  CAS  Google Scholar 

  64. Coehoorn, R., Haas, C., de Groot, R.A.: Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987)

    Article  CAS  Google Scholar 

  65. Schwierz, F.: Graphene transistors. Nat. Nanotech. 5, 487–496 (2010)

    Article  CAS  Google Scholar 

  66. Fivaz, R., Mooser, E.: Electron-phonon interaction in semiconducting layer structures. Phys. Rev. 136A, 833–836 (1964)

    Article  Google Scholar 

  67. Fivaz, R., Mooser, E.: Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967)

    Article  CAS  Google Scholar 

  68. Yu, Y.P., Cardona, M.: Fundamental of semiconductors, 3rd edn. Springer, Heidelberg (2005)

    Book  Google Scholar 

  69. Kaasbjerg, K., Thygesen, K.S., Jacobsen, K.W.: Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012)

    Article  Google Scholar 

  70. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005)

    Article  CAS  Google Scholar 

  71. Ayari, A., Cobas, E., Ogundadegbe, O., Fuhrer, M.S.: Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007)

    Article  Google Scholar 

  72. Jena, D., Konar, A.: Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007)

    Article  Google Scholar 

  73. Ming-Wei, L., et al.: Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D Appl. Phys. 45, 345102 (2012)

    Article  Google Scholar 

  74. Bao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S.: high mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013)

    Article  Google Scholar 

  75. Kim, S., et al.: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011–1017 (2012)

    Article  Google Scholar 

  76. Han, S.W., et al.: Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011)

    Article  Google Scholar 

  77. Sze, S.M., Ng, K.K.: Physics of semiconductor devices, 3rd edn. Wiley and Sons, New York (2009)

    Google Scholar 

  78. Chakraborty, B., Bera, A., Muthu, D.V.S., Bhowmick, S., Waghmare, U.V., Sood, A.K.: Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403(R) (2012)

    Google Scholar 

  79. Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K.S., Geim, A.K., Ferrari, A.C., Mauri, F.: Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)

    Article  CAS  Google Scholar 

  80. Yan, J., Zhang, Y., Kim, P., Pinczuk, A.: Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802–166804 (2007)

    Article  Google Scholar 

  81. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.R., Waghmare, U.V., Yiang, R., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C., Sood, A.K.: Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor Nat. Nanotechnol. 3, 210–215 (2008)

    CAS  Google Scholar 

  82. Yan, Y., Henriksen, E.A., Kim, P., Pinczuk, A.: Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008)

    Article  Google Scholar 

  83. Das, A., Chakraborty, B., Piscanec, S., Pisana, S., Sood, A.K., Ferrari, A.C.: Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009)

    Article  Google Scholar 

  84. Malard, L.M., Elias, D.C., Alves, E.S., Pimenta, M.A.: Observation of distinct electron-phonon couplings in gated bilayer graphene. Phys. Rev. Lett. 101, 257401–257404 (2008)

    Article  CAS  Google Scholar 

  85. Attaccalite, C., Wirtz, L., Lazzeri, M., Mauri, F., Rubio, A.: Doped graphene as tunable electron–phonon coupling material. Nano Lett. 10, 1172–1176 (2010)

    Article  CAS  Google Scholar 

  86. Livneh, T., Sterer, E.: Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 81, 195209 (2010)

    Article  Google Scholar 

  87. Aksoy, R., Ma, Y., Selvi, E., Chyu, M.C., Ertas, A., White, A.: X-ray diffraction study of molybdenum disulfide to 38.8 GPa. J. Phys. Chem. Solids 67, 1914 (2006)

    Article  CAS  Google Scholar 

  88. Ho, C.H., Wu, C.S., Huang, Y.S., Liao, P.C., Tiong, K.K.: Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-x W x S 2 single crystals. J. Phys.: Condens. Matter 10, 9317–9328 (1998)

    CAS  Google Scholar 

  89. Connell, G.A.N., Wilson, J.A., Yoffe, A.D.: Effects of pressure and temperature on exciton absorption and band structure of layer crystals: molybdenum disulphide. J. Phys. Chem. Solids 30, 287–296 (1969)

    Article  CAS  Google Scholar 

  90. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J., Schuller, C.: Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011)

    Article  Google Scholar 

  91. Plechinger, G., Schrettenbrunner, F.-X., Eroms, J., Weiss, D., Schüller C, C., Korn T, T.: Low-temperature photoluminescence of oxide-covered single-layer MoS2. Phys. Status Solidi (RRL) 6, 126–128 (2012)

    Article  CAS  Google Scholar 

  92. Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802–196805 (2012)

    Article  Google Scholar 

  93. Ramasubramaniam, A.: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012)

    Article  Google Scholar 

  94. Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X.: Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012)

    Article  CAS  Google Scholar 

  95. Huard, V., Cox, R.T., Saminadayar, K., Arnoult, A., Tatarenko, S.: Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas. Phys. Rev. Lett. 84, 187–190 (2000)

    Article  CAS  Google Scholar 

  96. Finkelstein, G., Shtrikman, H., Bar-Joseph, I.: Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett. 74, 976–979 (1995)

    Article  CAS  Google Scholar 

  97. Tonndorf, P., et al.: Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bera, A., Sood, A.K. (2014). Insights into Vibrational and Electronic Properties of MoS2 Using Raman, Photoluminescence, and Transport Studies. In: Wang, Z. (eds) MoS2. Lecture Notes in Nanoscale Science and Technology, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02850-7_7

Download citation

Publish with us

Policies and ethics