Skip to main content
Log in

An advanced description of oxide traps in MOS transistors and its relation to DFT

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Recently, an advanced model for defects in the insulating regions of semiconductor devices has been suggested, which can explain the removable component of the negative bias temperature instability (NBTI) and recoverable random telegraph/flicker noise. We give a brief introduction to the atomic scale physics behind the model and show how model parameters can be extracted from density functional theory (DFT) calculations. The central link between DFT calculations and device simulation is the carrier energy dependent part of the capture cross section, the line shape function. Calculations of the line shape functions of model defect structures using a simple harmonic approximation are presented. The calculations show a considerable shift in the oscillator frequency upon charge state transitions for the defects investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shockley, W., Read, W.T.: Phys. Rev. 87, 835 (1952)

    Article  MATH  Google Scholar 

  2. Lang, D.V.: J. Appl. Phys. 45, 3023 (1974)

    Article  Google Scholar 

  3. Henry, C.H., Lang, D.V.: Phys. Rev. B 15(15), 989 (1977)

    Article  Google Scholar 

  4. Kirton, M., Uren, M.: Appl. Phys. Lett. 48, 1270 (1986)

    Article  Google Scholar 

  5. Palma, A., Godoy, A., Jemènez-Tejada, J.A., Carceller, J.E., Lòpez-Villanueva, J.A.: Phys. Rev. B 56(15), 9565 (1997)

    Article  Google Scholar 

  6. Zanolla, N., Siprak, D., Baumgartner, P., Sangiorgi, E., Fiegna, C.: In: Proc. Workshop on Ultimate Integration of Silicon, Udine, Italy, pp. 137–140 (2008)

    Chapter  Google Scholar 

  7. Grasser, T., Kaczer, B., Goes, W., Aichinger, T., Hehenberger, P., Nelhiebel, M.: In: Proc. Intl. Rel. Phys. Symp., pp. 33–44 (2009)

    Google Scholar 

  8. Wagner, P., Aichinger, T., Grasser, T., Nelhiebel, M., Vandamme, L.: In: Proc. Int. Conf. on Noise and Fluctuations (2009)

    Google Scholar 

  9. Kaczer, B., Grasser, T., Martin-Martinez, J., Simoen, E., Aoulaiche, M., Roussel, P., Groeseneken, G.: In: Proc. Intl. Rel. Phys. Symp. (2009)

    Google Scholar 

  10. Kaczer, B., Grasser, T., Roussel, P., Franco, J., Degraeve, R., Ragnarsson, L., Simoen, E., Groeseneken, G., Reisinger, H.: In: Proc. Intl. Rel. Phys. Symp., pp. 26–32 (2010)

    Google Scholar 

  11. Grasser, T., Reisinger, H., Wagner, P.J., Kaczer, B.: In: Proc. Intl. Rel. Phys. Symp., pp. 16–25 (2010)

    Google Scholar 

  12. Blöchl, P.E.: Phys. Rev. B 62(10), 6158 (2000)

    Article  Google Scholar 

  13. Fowler, W.B., Rudra, J.K., Zvanut, M.E., Feigl, F.J.: Phys. Rev. B 41(12), 8313 (1990)

    Article  Google Scholar 

  14. Nicklaw, C.J., Lu, Z.Y., Fleetwood, D., Schrimpf, R., Pantelides, S.: IEEE Trans. Nucl. Sci. 49, 2667 (2002)

    Article  Google Scholar 

  15. Fleetwood, D., Xiong, H., Lu, Z.Y., Nicklaw, C., Felix, J., Schrimpf, R., Pantelides, S.: IEEE Trans. Nucl. Sci. 49(6), 2674 (2002)

    Article  Google Scholar 

  16. Blöchl, P.E., Stathis, J.H.: Phys. Rev. Lett. 83(2), 372 (1999)

    Article  Google Scholar 

  17. Rudra, J.K., Fowler, W.B.: Phys. Rev. B 35(15), 8223 (1987)

    Article  Google Scholar 

  18. Mysovsky, A.S., Sushko, P.V., Mukhopadhyay, S., Edwards, A.H., Shluger, A.L.: Phys. Rev. B 69(8), 085202 (2004)

    Article  Google Scholar 

  19. Kresse, G., Furthmüeller, J.: Phys. Rev. B 54(11), 11169 (1996)

    Article  Google Scholar 

  20. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  21. Schanovsky, F., Goes, W., Grasser, T.: J. Vac. Sci. Technol. (2011, submitted)

  22. Makram-Ebeid, S., Lannoo, M.: Phys. Rev. B 25(10), 6406 (1982)

    Article  Google Scholar 

  23. Huang, K., Rhys, A.: Proc. R. Soc. A 204, 406 (1950)

    Article  MATH  Google Scholar 

  24. Zapol, B.: Chem. Phys. Lett. 93(6), 549 (1982)

    Article  Google Scholar 

  25. Ansbacher, F.: Z. Naturforsch. 14a, 889 (1959)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schanovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schanovsky, F., Gös, W. & Grasser, T. An advanced description of oxide traps in MOS transistors and its relation to DFT. J Comput Electron 9, 135–140 (2010). https://doi.org/10.1007/s10825-010-0323-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-010-0323-x

Keywords

Navigation