Skip to main content

Atomistic Modeling of Oxide Defects

  • Chapter
  • First Online:
Noise in Nanoscale Semiconductor Devices

Abstract

In this chapter we focus on the atomistic modeling of oxide defects in order to shed some light on the microscopic nature of random telegraph noise (RTN) and bias temperature instability (BTI). Density functional theory (DFT), arguably the most popular method in computational chemistry, allows the study of defects at an atomistic level from first principles. Here we will give a short introduction into the theoretical foundation of DFT and the methodology of modeling amorphous oxide materials. Furthermore we will briefly recap the mechanism of charge trapping at defects within the successful nonradiative multiphonon (NMP) model and explain the connection of its parameters to DFT simulations. At the end we will discuss the most promising defect candidates for RTN and BTI, and compare their theoretical characteristics obtained with DFT to parameters extracted from recent experimental data using the NMP model. Here our focus lies on defects in amorphous silica (a-SiO2) and hafnia (a-HfO2), which are the most relevant gate dielectrics for modern MOSFET devices. It will be demonstrated that the results from DFT generally are in good agreement with experimentally observed defect behavior, consolidating the physical validity of the NMP model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kirton, M. Uren, Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/f) noise. Adv. Phys. 38(4), 367–468 (1989)

    Article  Google Scholar 

  2. Y. Miura, Y. Matukura, Investigation of silicon-silicon dioxide interface using MOS structure. Jpn. J. Appl. Phys. 5(2), 180 (1966)

    Google Scholar 

  3. T. Grasser, K. Rott, H. Reisinger, M. Waltl, J. Franco, B. Kaczer, A unified perspective of RTN and BTI, in 2014 IEEE International Reliability Physics Symposium (2014), pp. 4A.5.1–4A.5.7

    Google Scholar 

  4. M. Chudzik, B. Doris, R. Mo, J. Sleight, E. Cartier, C. Dewan, D. Park, H. Bu, W. Natzle, W. Yan, C. Ouyang, K. Henson, D. Boyd, S. Callegari, R. Carter, D. Casarotto, M. Gribelyuk, M. Hargrove, W. He, Y. Kim, B. Linder, N. Moumen, V.K. Paruchuri, J. Stathis, M. Steen, A. Vayshenker, X. Wang, S. Zafar, T. Ando, R. Iijima, M. Takayanagi, V. Narayanan, R. Wise, Y. Zhang, R. Divakaruni, M. Khare, T.C. Chen, High-performance high- amp metal gates for 45nm CMOS and beyond with gate-first processing, in 2007 IEEE Symposium on VLSI Technology (2007), pp. 194–195

    Google Scholar 

  5. F. Schanovsky, O. Baumgartner, V. Sverdlov, T. Grasser, J. Comput. Electron. 11(3), 218–224 (2012)

    Google Scholar 

  6. T. Grasser, Stochastic charge trapping in oxides: from random telegraph noise to bias temperature instabilities. Microelectron. Reliab. 52(1), 39–70 (2012)

    Article  Google Scholar 

  7. H. Miki, N. Tega, M. Yamaoka, D.J. Frank, A. Bansal, M. Kobayashi, K. Cheng, C.P. D’Emic, Z. Ren, S. Wu, J.B. Yau, Y. Zhu, M.A. Guillorn, D.G. Park, W. Haensch, E. Leobandung, K. Torii, Statistical measurement of random telegraph noise and its impact in scaled-down high-k metal-gate MOSFETs, in 2012 International Electron Devices Meeting (2012), pp. 19.1.1–19.1.4

    Google Scholar 

  8. T. Grasser, H. Reisinger, P.-J. Wagner, B. Kaczer, Time-dependent defect spectroscopy for characterization of border traps in metal-oxide-semiconductor transistors. Phys. Rev. B 82, 245318 (2010)

    Article  Google Scholar 

  9. T. Grasser, P. Wagner, P. Hehenberger, W. Gos, B. Kaczer, A rigorous study of measurement techniques for negative bias temperature instability, in 2007 IEEE International Integrated Reliability Workshop Final Report (2007), pp. 6–11

    Google Scholar 

  10. B. Stampfer, A. Grill, M. Waltl, Advanced electrical characterization of single oxide defects utilizing noise signals, in Noise in Nanoscale Semiconductor Devices, ed. by T. Grasser (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-37500-3_7

    Google Scholar 

  11. P. Lenahan, Dominating defects in the MOS system: P b and E′ centers, in Defects in Microelectronic Materials and Devices, ed. by D. Fleetwood, R. Schrimpf, S. Pantelides (Taylor and Francis/CRC Press, Boca Raton, 2008)

    Google Scholar 

  12. A. Stesmans, V.V. Afanas’ev, Electron spin resonance features of interface defects in thermal (100) Si/SiO2. J. Appl. Phys. 83(5), 2449–2457 (1998)

    Article  Google Scholar 

  13. J.F. Conley, P.M. Lenahan, Room temperature reactions involving silicon dangling bond centers and molecular hydrogen in amorphous SiO2 thin films on silicon, Appl. Phys. Lett. 62(1), 40–42 (1993)

    Article  Google Scholar 

  14. A.T. Krishnan, S. Chakravarthi, P. Nicollian, V. Reddy, S. Krishnan, Negative bias temperature instability mechanism: the role of molecular hydrogen. Appl. Phys. Lett. 88(15), 153518 (2006)

    Google Scholar 

  15. T. Grasser, B. Kaczer, W. Goes, An energy-level perspective of bias temperature instability, in 2008 IEEE International Reliability Physics Symposium (2008), pp. 28–38

    Google Scholar 

  16. T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, H. Hutter, Impact of hydrogen on recoverable and permanent damage following negative bias temperature stress, in 2010 IEEE International Reliability Physics Symposium (2010), pp. 1063–1068

    Google Scholar 

  17. S. Mohr, L.E. Ratcliff, L. Genovese, D. Caliste, P. Boulanger, S. Goedecker, T. Deutsch, Accurate and efficient linear scaling DFT calculations with universal applicability. Phys. Chem. Chem. Phys. 17, 31360–31370 (2015)

    Article  Google Scholar 

  18. M. Born, R. Oppenheimer, Zur quantentheorie der molekeln. Ann. Phys. 389(20), 457–484 (1927)

    Article  MATH  Google Scholar 

  19. A. Szabo, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989)

    Google Scholar 

  20. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  21. E. Engel, Density Functional Theory: An Advanced Course (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  22. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  23. P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Math. Proc. Cambridge Philos. Soc. 26(3), 376–385 (1930)

    Article  MATH  Google Scholar 

  24. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  Google Scholar 

  25. P.P. Rushton, Towards a non-local density functional description of exchange and correlation. PhD Thesis, University of Durham, 2002

    Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997)

    Google Scholar 

  27. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992)

    Article  Google Scholar 

  28. D.C. Langreth, M.J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28, 1809–1834 (1983)

    Article  Google Scholar 

  29. A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  Google Scholar 

  30. A.J. Garza, G.E. Scuseria, Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 7, 08 (2016)

    Article  Google Scholar 

  31. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    Article  Google Scholar 

  32. J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996)

    Article  Google Scholar 

  33. A.D. Becke, Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Google Scholar 

  34. M. Guidon, J. Hutter, J. VandeVondele, Auxiliary density matrix methods for Hartree-Fock exchange calculations. J. Chem. Theory Comput. 6(8), 2348–2364 (2010). PMID: 26613491

    Article  Google Scholar 

  35. V.B. Sulimov, P.V. Sushko, A.H. Edwards, A.L. Shluger, A.M. Stoneham, Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz. Phys. Rev. B 66, 024108 (2002)

    Article  Google Scholar 

  36. A.-M. El-Sayed, Atomistic modelling of charge trapping defects in silicon dioxide. PhD thesis, University College London, 2015

    Google Scholar 

  37. D. Muñoz Ramo, J.L. Gavartin, A.L. Shluger, G. Bersuker, Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory. Phys. Rev. B 75, 205336 (2007)

    Article  Google Scholar 

  38. P.E. Blöchl, J.H. Stathis, Hydrogen electrochemistry and stress-induced leakage current in silica. Phys. Rev. Lett. 83, 372–375 (1999)

    Article  Google Scholar 

  39. A.-M. El-Sayed, M.B. Watkins, T. Grasser, V.V. Afanas’ev, A.L. Shluger, Hydrogen-induced rupture of strained Si–O bonds in amorphous silicon dioxide. Phys. Rev. Lett. 114, 115503 (2015)

    Article  Google Scholar 

  40. T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer Science+Business Media, LLC, New York 2010)

    Google Scholar 

  41. T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin, The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 EP (2016). Review Article

    Google Scholar 

  42. G. Broglia, G. Or, L. Larcher, M. Montorsi, Molecular dynamics simulation of amorphous HfO2 for resistive RAM applications. Modell. Simul. Mater. Sci. Eng. 22, 065006 (2014)

    Article  Google Scholar 

  43. S.R. Elliott, Physics of Amorphous Materials (Longman, New York, 1984)

    Google Scholar 

  44. D. Price, J. Carpenter, Scattering function of vitreous silica. J. Non Cryst. Solids 92(1), 153–174 (1987)

    Article  Google Scholar 

  45. R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2008)

    MATH  Google Scholar 

  46. P. McMillan, B. Piriou, R. Couty, A Raman study of pressure-densified vitreous silica. J. Chem. Phys. 81(10), 4234–4236 (1984)

    Article  Google Scholar 

  47. D.R. Fredkin, A. Komornicki, S.R. White, K.R. Wilson, Ab initio infrared and Raman spectra. J. Chem. Phys. 78(12), 7077–7092 (1983)

    Article  Google Scholar 

  48. B. Kaduk, T. Kowalczyk, T. Van Voorhis, Constrained density functional theory. Chem. Rev. 112(1), 321–370 (2012). PMID: 22077560

    Article  Google Scholar 

  49. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-Nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004)

    Article  Google Scholar 

  50. S. Lany, A. Zunger, Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008)

    Article  Google Scholar 

  51. C. Freysoldt, J. Neugebauer, C.G. Van de Walle, Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009)

    Article  Google Scholar 

  52. H.-P. Komsa, T.T. Rantala, A. Pasquarello, Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B 86, 045112 (2012)

    Article  Google Scholar 

  53. A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V.V. Afanas’ev, A.L. Shluger, Theoretical models of hydrogen-induced defects in amorphous silicon dioxide. Phys. Rev. B 92, 014107 (2015)

    Article  Google Scholar 

  54. K.O. Jeppson, C.M. Svensson, Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. J. Appl. Phys. 48(5), 2004–2014 (1977)

    Article  Google Scholar 

  55. M. Houssa, M. Aoulaiche, S. De Gendt, G. Groeseneken, M.M. Heyns, A. Stesmans, Reaction-dispersive proton transport model for negative bias temperature instabilities. Appl. Phys. Lett. 86(9), 093506 (2005)

    Google Scholar 

  56. F. Schanovsky, T. Grasser, On the microscopic limit of the RD model, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, New York, 2014)

    Google Scholar 

  57. R.N. Hall, Electron-hole recombination in germanium. Phys. Rev. 87, 387–387 (1952)

    Article  Google Scholar 

  58. W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  Google Scholar 

  59. A. McWorther, 1/f noise and related surface effects in germanium. Sc.D Thesis, Massachusetts Institute of Technology, 1955

    Google Scholar 

  60. F. Schanovsky, W. Gös, T. Grasser, An advanced description of oxide traps in MOS transistors and its relation to DFT. J. Comput. Electron. 9, 135–140 (2010)

    Article  Google Scholar 

  61. F. Schanovsky, W. Gös, T. Grasser, Multiphonon hole trapping from first principles. J. Vac. Sci. Technol. B 29(1), 01A201 (2011)

    Google Scholar 

  62. F. Schanovsky, O. Baumgartner, V. Sverdlov, T. Grasser, A multi scale modeling approach to non-radiative multi phonon transitions at oxide defects in MOS structures. J. Comput. Electron. 11, 218–224 (2012)

    Article  Google Scholar 

  63. K. Huang, A. Rhys, Theory of light absorption and non-radiative transitions in F-centres. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 204(1078), 406–423 (1950)

    MATH  Google Scholar 

  64. C.H. Henry, D.V. Lang, Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys. Rev. B 15, 989–1016 (1977)

    Article  Google Scholar 

  65. W. Goes, F. Schanovsky, T. Grasser, Advanced modeling of oxide defects, in Bias Temperature Instability for Devices and Circuits, ed. by T. Grasser (Springer, New York, 2014)

    Google Scholar 

  66. W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. Shluger, T. Grasser, Identification of oxide defects in semiconductor devices: a systematic approach linking DFT to rate equations and experimental evidence. Microelectron. Reliab. 87, 286–320 (2018)

    Article  Google Scholar 

  67. T. Grasser, H. Reisinger, P. Wagner, B. Kaczer, F. Schanovsky, W. Goes, The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability, in Proceedings of the International Reliability Physics Symposium (2010), pp. 16–25

    Google Scholar 

  68. M. Waltl, G. Rzepa, A. Grill, W. Gös, J. Franco, B. Kaczer, L. Witters, J. Mitard, N. Horiguchi, T. Grasser, Superior NBTI in high-k SiGe transistors–part I: experimental. IEEE Trans. Electron Devices 64(5), 2092–2098 (2017)

    Article  Google Scholar 

  69. M. Waltl, G. Rzepa, A. Grill, W. Gös, J. Franco, B. Kaczer, L. Witters, J. Mitard, N. Horiguchi, T. Grasser, Superior NBTI in high-k SiGe transistors–part II: theory. IEEE Trans. Electron Devices 64(5), 2099–2105 (2017)

    Article  Google Scholar 

  70. F. Schanovsky, Atomistic modeling in the context of the bias temperature instability. Ph.D Thesis, TU Wien, 2013

    Google Scholar 

  71. W. Goes, Hole trapping and the negative bias temperature instability. Ph.D Thesis, TU Wien, 2011

    Google Scholar 

  72. Y. Wimmer, A.-M. El-Sayed, W. Gös, T. Grasser, A.L. Shluger, Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 472(2190), 20160009 (2016)

    Google Scholar 

  73. H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3(2), 107–115 (1935)

    Article  Google Scholar 

  74. M.G. Evans, M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  Google Scholar 

  75. R. Fletcher, Practical Methods of Optimization (Wiley, Chichester, 1987)

    MATH  Google Scholar 

  76. H. Jónsson, G. Mills, K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (World scientific, Singapore, 1998), pp. 385–404

    Google Scholar 

  77. Y. Wimmer, Hydrogen related defects in amorphous SiO2 and the negative bias temperature instability. PhD Thesis, TU Vienna, E360, 2017

    Google Scholar 

  78. J. Franck, E.G. Dymond, Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542 (1926)

    Article  Google Scholar 

  79. E. Condon, A theory of intensity distribution in band systems. Phys. Rev. 28, 1182–1201 (1926)

    Article  MATH  Google Scholar 

  80. J.F. Conley, P.M. Lenahan, W.F. McArthur, Preliminary investigation of the kinetics of postoxidation rapid thermal anneal induced hole-trap-precursor formation in microelectronic SiO2 films. Appl. Phys. Lett. 73(15), 2188–2190 (1998)

    Article  Google Scholar 

  81. T. Tewksbury, Relaxation effects in MOS devices due to tunnel exchange with near-interface oxide traps. Ph.D Thesis, Massachusetts Institute of Technology, 1992

    Google Scholar 

  82. T. Chachiyo, J.H. Rodriguez, A direct method for locating minimum-energy crossing points (MECPs) in spin-forbidden transitions and nonadiabatic reactions. J. Chem. Phys. 123(9), 094711 (2005)

    Google Scholar 

  83. G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, P.J. Roussel, D. Linten, B. Kaczer, T. Grasser, Comphy—a compact-physics framework for unified modeling of BTI. Microelectron. Reliab. 85, 49–65 (2018)

    Article  Google Scholar 

  84. K.L. Yip, W.B. Fowler, Electronic structure of \({{E}_{1}}^{{'}}\) centers in SiO2. Phys. Rev. B 11, 2327–2338 (1975)

    Google Scholar 

  85. E.P. O’Reilly, J. Robertson, Theory of defects in vitreous silicon dioxide. Phys. Rev. B 27, 3780–3795 (1983)

    Article  Google Scholar 

  86. J.K. Rudra, W.B. Fowler, F.J. Feigl, Model for the \({E}_{2}^{{'}}\) center in alpha quartz. Phys. Rev. Lett. 55, 2614–2617 (1985)

    Google Scholar 

  87. M.K. Schurman, M. Tomozawa, Equilibrium oxygen vacancy concentrations and oxidant diffusion in germania, silica, and germania-silica glasses. J. Non-Cryst. Solids 202(1), 93–106 (1996)

    Article  Google Scholar 

  88. S. Mukhopadhyay, P.V. Sushko, A.M. Stoneham, A.L. Shluger, Modeling of the structure and properties of oxygen vacancies in amorphous silica. Phys. Rev. B 70, 195203 (2004)

    Article  Google Scholar 

  89. N. Richard, L. Martin-SaMOS, G. Roma, Y. Limoge, J.-P. Crocombette, First principle study of neutral and charged self-defects in amorphous SiO2. J. Non-Cryst. Solids 351(21), 1825–1829 (2005)

    Article  Google Scholar 

  90. S. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S. Rashkeev, D. Fleetwood, R. Schrimpf, The E’ center and oxygen vacancies in SiO2. J. Non-Cryst. Solids 354(2), 217–223 (2008). Physics of Non-Cryst. Solids 11.

    Google Scholar 

  91. F. Schanovsky, O. Baumgartner, W. Gös, T. Grasser, A detailed evaluation of model defects as candidates for the bias temperature instability, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2013), pp. 1–4

    Google Scholar 

  92. T. Grasser, W. Gös, Y. Wimmer, F. Schanovsky, G. Rzepa, M. Waltl, K. Rott, H. Reisinger, V.V. Afanas’Ev, A. Stesmans, A.-M. El-Sayed, A.L. Shluger, On the microscopic structure of hole traps in pMOSFETs, in 2014 IEEE International Electron Devices Meeting (2014), pp. 530–533. Talk: International Electron Devices Meeting (IEDM), San Francisco (15 Dec 2014–17 Dec 2014)

    Google Scholar 

  93. P.M. Lenahan, J.P. Campbell, A.T. Krishnan, S. Krishnan, A model for NBTI in nitrided oxide MOSFETs which does not involve hydrogen or diffusion. IEEE Trans. Device Mater. Reliab. 11, 219–226 (2011)

    Article  Google Scholar 

  94. T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, H. Hutter, Impact of hydrogen on recoverable and permanent damage following negative bias temperature stress, in 2010 IEEE International Reliability Physics Symposium (2010), pp. 1063–1068

    Google Scholar 

  95. K. Kajihara, L. Skuja, M. Hirano, H. Hosono, Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass. Phys. Rev. Lett. 89, 135507 (2002)

    Article  Google Scholar 

  96. J. Godet, A. Pasquarello, Proton diffusion mechanism in amorphous SiO2. Phys. Rev. Lett. 97, 155901 (2006)

    Article  Google Scholar 

  97. S.A. Sheikholeslam, H. Manzano, C. Grecu, A. Ivanov, Reduced hydrogen diffusion in strained amorphous SiO2: understanding ageing in MOSFET devices. J. Mater. Chem. C 4, 8104–8110 (2016)

    Article  Google Scholar 

  98. J. Isoya, J.A. Weil, L.E. Halliburton, EPR and ab initio SCF-MO studies of the Si-H-Si system in the E’4 center of α-quartz. J. Chem. Phys. 74(10), 5436–5448 (1981)

    Article  Google Scholar 

  99. P.E. Blöchl, First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys. Rev. B 62, 6158–6179 (2000)

    Article  Google Scholar 

  100. A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V.V. Afanas’ev, A.L. Shluger, Theoretical models of hydrogen-induced defects in amorphous silicon dioxide. Phys. Rev. B 92, 014107 (2015)

    Article  Google Scholar 

  101. C.M. Nelson, R.A. Weeks, Trapped electrons in irradiated quartz and silica: I, optical absorption. J. Am. Ceram. Soc. 43(8), 396–399 (1960)

    Article  Google Scholar 

  102. V.V. Afanas’ev, A. Stesmans, Interfacial defects in SiO2 revealed by photon stimulated tunneling of electrons. Phys. Rev. Lett. 78, 2437–2440 (1997)

    Article  Google Scholar 

  103. N.S. Saks, A.K. Agarwal, Hall mobility and free electron density at the SiC/SiO2 interface in 4H-SiC. Appl. Phys. Lett. 77(20), 3281–3283 (2000)

    Article  Google Scholar 

  104. A.A. Karpushin, A.N. Sorokin, V.A. Gritsenko, Si–Si bond as a deep trap for electrons and holes in silicon nitride. JETP Lett. 103, 171–174 (2016)

    Article  Google Scholar 

  105. A.-M. El-Sayed, M.B. Watkins, V.V. Afanas’ev, A.L. Shluger, Nature of intrinsic and extrinsic electron trapping in SiO2. Phys. Rev. B 89, 125201 (2014)

    Article  Google Scholar 

  106. D.L. Griscom, Self-trapped holes in amorphous silicon dioxide. Phys. Rev. B 40, 4224–4227 (1989)

    Article  Google Scholar 

  107. Y. Sasajima, K. Tanimura, Optical transitions of self-trapped holes in amorphous SiO2. Phys. Rev. B 68, 014204 (2003)

    Article  Google Scholar 

  108. A. Kimmel, P. Sushko, A. Shluger, Structure and spectroscopic properties of trapped holes in silica. J. Non-Cryst. Solids 353(5), 599–604 (2007). SiO2, Advanced Dielectrics and Related Devices 6

    Google Scholar 

  109. D.Z. Gao, J. Strand, M.S. Munde, A.L. Shluger, Mechanisms of oxygen vacancy aggregation in SiO2 and HfO2. Front. Phys. 7, 43 (2019)

    Article  Google Scholar 

  110. F. Aryasetiawan, O. Gunnarsson, The GW method. Rep. Prog. Phys. 61, 237–312 (1998)

    Article  Google Scholar 

  111. T. Grasser, K. Rott, H. Reisinger, M. Waltl, P.-J. Wagner, F. Schanovsky, W. Gös, G. Pobegen, B. Kaczer, Hydrogen-related volatile defects as the possible cause for the recoverable component of NBTI, in 2013 International Electron Devices Meeting (IEDM) Technical Digest (2013), pp. 409–412. Talk: International Electron Devices Meeting (IEDM), Washington (09 Dec 2013–11 Dec 2013)

    Google Scholar 

  112. T. Aichinger, M. Nelhiebel, S. Einspieler, T. Grasser, In situ poly heater-a reliable tool for performing fast and defined temperature switches on chip. IEEE Trans. Device Mater. Reliab. 10, 3–8 (2010)

    Article  Google Scholar 

  113. Y. Wimmer, W. Gös, A.-M. El-Sayed, A. L. Shluger, T. Grasser, A Density-functional study of defect volatility in amorphous silicon dioxide, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2015), pp. 44–47. Talk: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington (09 Sep 2015–11 Sep 2015)

    Google Scholar 

  114. J. Strand, M. Kaviani, D. Gao, A.-M. El-Sayed, V.V. Afanas’ev, A.L. Shluger, Intrinsic charge trapping in amorphous oxide films: status and challenges. J. Phys.: Condens. Matter 30, 233001 (2018)

    Google Scholar 

  115. F. Bohra, B. Jiang, J.-M. Zuo, Textured crystallization of ultrathin hafnium oxide films on silicon substrate. Appl. Phys. Lett. 90(16), 161917 (2007)

    Google Scholar 

  116. A. Shluger, Defects in Oxides in Electronic Devices (Springer International Publishing, Cham, 2018), pp. 1–22

    Google Scholar 

  117. F. Cerbu, O. Madia, D.V. Andreev, S. Fadida, M. Eizenberg, L. Breuil, J.G. Lisoni, J.A. Kittl, J. Strand, A.L. Shluger, V.V. Afanas’ev, M. Houssa, A. Stesmans, Intrinsic electron traps in atomic-layer deposited HfO2 insulators. Appl. Phys. Lett. 108(22), 222901 (2016)

    Google Scholar 

  118. S.R. Bradley, G. Bersuker, A.L. Shluger, Modelling of oxygen vacancy aggregates in monoclinic HfO2: can they contribute to conductive filament formation? J. Phys. Condens. Matter 27, 415401 (2015)

    Article  Google Scholar 

  119. M. Kaviani, J. Strand, V.V. Afanas’ev, A.L. Shluger, Deep electron and hole polarons and bipolarons in amorphous oxide. Phys. Rev. B 94, 020103 (2016)

    Article  Google Scholar 

  120. J. Strand, M. Kaviani, V.V. Afanas’ev, J.G. Lisoni, A.L. Shluger, Intrinsic electron trapping in amorphous oxide. Nanotechnology 29, 125703 (2018)

    Article  Google Scholar 

  121. V.V. Afanas’ev, A. Stesmans, Stable trapping of electrons and holes in deposited insulating oxides: Al2O3, ZrO2, and HfO2. J. Appl. Phys. 95(5), 2518–2526 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Waldhoer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waldhoer, D., El-Sayed, AM.B., Wimmer, Y., Waltl, M., Grasser, T. (2020). Atomistic Modeling of Oxide Defects. In: Grasser, T. (eds) Noise in Nanoscale Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-37500-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37500-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37499-0

  • Online ISBN: 978-3-030-37500-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics