Skip to main content
Log in

Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we review and extend our recent works based on the Monte Carlo method to solve the Wigner-Boltzmann transport equation and model semiconductor nanodevices. After presenting the different possible approaches to quantum mechanical modelling, the formalism and the theoretical framework are described together with the particle Monte Carlo implementation using a technique fully compatible with semiclassical simulation. Examples are given to highlight the importance of considering both quantum and scattering effects in nanodevices operating at room temperature, such as resonant tunnelling diode (RTD), double-gate MOSFET and carbon nanotube FET. Quantum and semiclassical approaches are compared for transistor simulation. Finally, the phonon-induced electron decoherence in RTD and MOSFET is examined through the analysis of the density matrix elements computed from the Wigner function. This formalism is shown to be relevant for the quantitative analysis of devices operating in mixed quantum/semiclassical regime and to understand the transition between both regimes or between coherent and sequential tunnelling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischetti, M.V., Laux, S.E.: Monte Carlo simulation of electron transport in Si: the first 20 years. In: Proceedings of the European Solid State Device Research Conference (ESSDERC’96), pp. 813–820 (1996)

  2. Ancona, M.G.: Density-gradient theory analysis of electron distributions in heterostructures. Superlattices Microstruct. 7, 119–130 (1990)

    Article  Google Scholar 

  3. Ancona, M.G., Iafrate, G.J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)

    Article  Google Scholar 

  4. Ferry, D.K., Akis, R., Vasileska, D.: Quantum effects in MOSFETs: use of an effective potential in 3D Monte Carlo simulation of ultra-short channel devices. IEDM Technol. Dig., 871–874 (2000)

  5. Tsuchiya, H., Ravaioli, U.: Particle Monte Carlo simulation of quantum phenomena in semiconductor nanostructures. J. Appl. Phys. 89, 4023–4029 (2001)

    Article  Google Scholar 

  6. Winstead, B., Ravaioli, U.: A quantum correction based on Schrodinger equation applied to Monte Carlo device simulation. IEEE Trans. Electron Devices 50, 440–446 (2003)

    Article  Google Scholar 

  7. Jaud, M.A., Barraud, S., Saint-Martin, J., Bournel, A., Dollfus, P., Jaouen, H.: A pearson effective potential for Monte Carlo simulation of quantum confinement effects in nMOSFETs. IEEE Trans. Electron Devices 55, 3450–3458 (2008)

    Article  Google Scholar 

  8. Gilbert, M.J., Ferry, D.K.: Efficient quantum three-dimensional modeling of fully depleted ballistic silicon-on-insulator metal-oxide-semiconductor field-effect-transistors. J. Appl. Phys. 95, 7954–7960 (2004)

    Article  Google Scholar 

  9. Mahan, G.D.: Many-Particle Physics. Plenum, New York (1990)

    Google Scholar 

  10. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)

    Article  Google Scholar 

  11. Jovanovic, D., Venugopal, R.: Computational techniques for the nonequilibrium quantum field theory simulation of MOSFETs. In: 7th International Workshop on Computational Electronics, 2000. Book of Abstracts. IWCE Glasgow 2000, pp. 30–31 (2000)

  12. Svizhenko, A., Anantram, M.P., Govindan, T.R.: 2D quantum simulation of MOSFET using the non equilibrium Green’s function method. In: 7th International Workshop on Computational Electronics, 2000. Book of Abstracts. IWCE Glasgow 2000, pp. 112–113 (2000)

  13. Svizhenko, A., Anantram, M.P.: Role of scattering in nanotransistors. IEEE Trans. Electron Devices 50, 1459–1466 (2003)

    Article  Google Scholar 

  14. Venugopal, R., Paulsson, M., Goasguen, S., Datta, S., Lundstrom, M.S.: A simple quantum mechanical treatment of scattering in nanoscale transistors. J. Appl. Phys. 93, 5613–5625 (2003)

    Article  Google Scholar 

  15. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96, 2192–2203 (2004)

    Article  Google Scholar 

  16. Gilbert, M.J., Akis, R., Ferry, D.K.: Phonon-assisted ballistic to diffusive crossover in silicon nanowire transistors. J. Appl. Phys. 98, 094303 (2005)

    Article  Google Scholar 

  17. Jin, S., Park, Y.J., Min, H.S.: A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions. J. Appl. Phys. 99, 123719 (2006)

    Article  Google Scholar 

  18. Luisier, M., Schenk, A., Fichtner, W.: Quantum transport in two- and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100, 043713 (2006)

    Article  Google Scholar 

  19. Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18, 255201 (2007)

    Article  Google Scholar 

  20. Koswatta, S.O., Hasan, S., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54, 2339–2351 (2007)

    Article  Google Scholar 

  21. Pourfath, M., Kosina, H.: The effect of phonon scattering on the switching response of carbon nanotube field-effect transistors. Nanotechnology 18, 424036 (2007)

    Article  Google Scholar 

  22. Buran, C., Pala, M., Bescond, M., Mouis, M.: Full-three dimensional quantum approach to evaluate the surface-roughness-limited magnetoresistance mobility in SNWT. J. Comput. Electron. 7, 328–331 (2008)

    Article  Google Scholar 

  23. Khan, H.R., Mamaluy, D., Vasileska, D.: Quantum transport simulation of experimentally fabricated nano-FinFET. IEEE Trans. Electron Devices 54, 784–796 (2007)

    Article  Google Scholar 

  24. Brunetti, R., Jacoboni, C., Rossi, F.: Quantum theory of transient transport in semiconductors: a Monte Carlo approach. Phys. Rev. B 39, 10781–10790 (1989)

    Article  Google Scholar 

  25. Jacoboni, C.: Comparison between quantum and classical results in hot-electron transport. Semiconduct. Sci. Technol. 7, B6–B11 (1992)

    Article  Google Scholar 

  26. Rossi, F., Jacoboni, C.: Self-scattering in Monte Carlo simulation of quantum transport. EPL (Europh. Lett.) 18, 169–173 (1992)

    Article  Google Scholar 

  27. Fischetti, M.V.: Theory of electron transport in small semiconductor devices using the Pauli master equation. J. Appl. Phys. 83, 270–291 (1998)

    Article  Google Scholar 

  28. Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901 (1999)

    Article  Google Scholar 

  29. Gebauer, R., Car, R.: Kinetic theory of quantum transport at the nanoscale. Phys. Rev. B 70, 125324 (2004)

    Article  Google Scholar 

  30. Gebauer, R., Car, R.: Current in open quantum systems. Phys. Rev. Lett. 93, 160404 (2004)

    Article  Google Scholar 

  31. Lutterbach, L.G., Davidovich, L.: Method for direct measurement of the Wigner function in cavity QED and ion traps. Phys. Rev. Lett. 78, 2547 (1997)

    Article  Google Scholar 

  32. Bertet, P., Auffeves, A., Maioli, P., Osnaghi, S., Meunier, T., Brune, M., Raimond, J.M., Haroche, S.: Direct measurement of the Wigner function of a one-photon fock state in a cavity. Phys. Rev. Lett. 89, 200402 (2002)

    Article  Google Scholar 

  33. Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.-M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    Article  Google Scholar 

  34. Ravaioli, U., Osman, M.A., Pötz, W., Kluksdahl, N.C., Ferry, D.K.: Investigation of ballistic transport through resonant tunneling quantum wells using Wigner function approach. Physica B 134, 36–40 (1985)

    Article  Google Scholar 

  35. Frensley, W.R.: Transient response of a tunneling device obtaine from the Wigner function. Phys. Rev. Lett. 57, 2853 (1986)

    Article  Google Scholar 

  36. Kluksdahl, N., Pötz, W., Ravaioli, U., Ferry, D.K.: Wigner function study of a double quantum barrier resonant tunnelling diode. Superlattices Microstruct. 3, 41–45 (1987)

    Article  Google Scholar 

  37. Buot, F.A., Jensen, K.L.: Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices. Phys. Rev. B 42, 9429–9457 (1990)

    Article  Google Scholar 

  38. Frensley, W.R.: Boundary-conditions for open quantum-systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)

    Article  Google Scholar 

  39. Bertoni, A., Bordone, P., Brunetti, R., Jacoboni, C.: The Wigner function for electron transport in mesoscopic systems. J. Phys.: Condens. Matter 11, 5999–6012 (1999)

    Article  Google Scholar 

  40. Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Devices 50, 769–773 (2003)

    Article  Google Scholar 

  41. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)

    Article  Google Scholar 

  42. Querlioz, D., Dollfus, P., Do, V.-N., Bournel, A., Nguyen, V.L.: An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs. J. Comput. Electron. 5, 443–446 (2006)

    Article  Google Scholar 

  43. Querlioz, D., Saint-Martin, J., Do, V.N., Bournel, A., Dollfus, P.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5, 737–744 (2006)

    Article  Google Scholar 

  44. Biegel, B.A., Plummer, J.D.: Applied bias slewing in transient Wigner function simulation of resonant tunneling diodes. IEEE Trans. Electron Devices 44, 733–737 (1997)

    Article  Google Scholar 

  45. Kim, K.-Y.: A discrete formulation of the Wigner transport equation. J. Appl. Phys. 102, 113705–7 (2007)

    Article  Google Scholar 

  46. Yamada, Y., Tsuchiya, H.: Three-dimensional quantum transport simulation of Si-nanowire transistors based on Wigner function model. In: Proc. Int. Conf. Simulation of Semiconductor Processes and Devices. Hakone, pp. 281–284 (2008)

  47. Nedjalkov, M., Vasileska, D.: Semi-discrete 2D Wigner-particle approach. J. Comput. Electron. 7, 222–225 (2008)

    Article  Google Scholar 

  48. Knezevic, I.: Decoherence due to contacts in ballistic nanostructures. Phys. Rev. B 77, 125301–18 (2008)

    Article  Google Scholar 

  49. Buscemi, F., Bordone, P., Bertoni, A.: Simulation of decoherence in 1D systems, a comparison between distinguishable- and indistinguishable-particle collisions. Phys. Status Solidi (c) 5, 139–142 (2008)

    Article  Google Scholar 

  50. Buscemi, F., Cancellieri, E., Bordone, P., Bertoni, A., Jacoboni, C.: Electron decoherence in a semiconductor due to electron-phonon scattering. Phys. Status Solidi (c) 5, 52–55 (2008)

    Article  Google Scholar 

  51. Jacoboni, C., Brunetti, R., Bordone, P., Bertoni, A.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High Speed Electron. Syst. 11, 387–423 (2001)

    Google Scholar 

  52. Nedjalkov, M.: Wigner transport in presence of phonons: particle models of the electron kinetics. In: D’Amico, A., Balestrino, G., Paoletti, A. (eds.) From Nanostructures to Nanosensing Applications, vol. 160, pp. 55–103. IOS Press, Amsterdam (2005). Societa Italiana Di Fisica

    Google Scholar 

  53. Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices. Phys. Rev. B 78, 165306 (2008)

    Article  Google Scholar 

  54. Querlioz, D.: Phénomènes quantiques et décohérence dans les nano-dispositifs semiconducteurs: étude par une approche Wigner Monte Carlo. PhD dissertation. Orsay: Université Paris-Sud (2008)

  55. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Wien/New York (1989)

    Google Scholar 

  56. Sverdlov, V., Grasser, T., Kosina, H., Selberherr, S.: Scattering and space-charge effects in Wigner Monte Carlo simulations of single and double barrier devices. J. Comput. Electron. 5, 447–450 (2006)

    Article  Google Scholar 

  57. Dollfus, P., Querlioz, D., Saint-Martin, J., Bournel, A.: Wigner Monte Carlo approach to quantum transport in nanodevices. In: Proc. Int. Conf. Simulation of Semiconductor Processes and Devices, pp. 277–280 (2008)

  58. Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720–7735 (1989)

    Article  Google Scholar 

  59. Jensen, K.L., Buot, F.A.: Numerical-simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078–1081 (1991)

    Article  Google Scholar 

  60. Biegel, B.A., Plummer, J.D.: Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation. Phys. Rev. B 54, 8070–8082 (1996)

    Article  Google Scholar 

  61. Saint-Martin, J., Bournel, A., Aubry-Fortuna, V., Monsef, F., Chassat, C., Dollfus, P.: Monte Carlo simulation of double gate MOSFET including multi sub-band description. J. Comput. Electron. 5, 439–442 (2006)

    Article  Google Scholar 

  62. Lucci, L., Palestri, P., Esseni, D., Bergagnini, L., Selmi, L.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54, 1156–1164 (2007)

    Article  Google Scholar 

  63. Saint-Martin, J., Bournel, A., Monsef, F., Chassat, C., Dollfus, P.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semiconduct. Sci. Technol. 21, L29–L31 (2006)

    Article  Google Scholar 

  64. Querlioz, D., Saint-Martin, J., Huet, K., Bournel, A., Aubry-Fortuna, V., Chassat, C., Galdin-Retailleau, S., Dollfus, P.: On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. IEEE Trans. Electron Devices 54, 2232–2242 (2007)

    Article  Google Scholar 

  65. Querlioz, D., Saint-Martin, J., Do, V.-N., Bournel, A., Dollfus, P.: Fully quantum self-consistent study of ultimate DG-MOSFETs including realistic scattering using a Wigner Monte-Carlo approach. IEDM Tech. Dig. San Francisco: IEEE Electron Devices Society, pp. 941–944 (2006)

  66. Querlioz, D., Saint-Martin, J., Do, V.N., Bournel, A., Dollfus, P.: Wigner ensemble Monte-Carlo simulation of nano-MOSFETs in degenerate conditions. Phys. Status Solidi (c) 5, 150–153 (2008)

    Article  Google Scholar 

  67. Monsef, F., Dollfus, P., Galdin-Retailleau, S., Herzog, H.J., Hackbarth, T.: Electron transport in Si/SiGe modulation-doped heterostructures using Monte Carlo simulation. J. Appl. Phys. 95, 3587–3593 (2004)

    Article  Google Scholar 

  68. Do, V.-N.: Modeling and simulating quantum electronic transport in semiconductor nanometer devices. PhD dissertation. Univ. Paris-Sud, Orsay (2007)

  69. Charlier, J.-C., Blase, X., Roche, S.: Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–56 (2007)

    Article  Google Scholar 

  70. Cazin d’Honincthun, H., Galdin-Retailleau, S., Bournel, A., Dollfus, P., Bourgoin, J.-P.: Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance. C.R. Phys. 9, 67–77 (2008)

    Article  Google Scholar 

  71. Frégonèse, S., Cazin d’Honincthun, H., Goguet, J., Maneux, C., Zimmer, T., Bourgoin, J.P., Dollfus, P., Galdin-Retailleau, S.: Computationally efficient physics-based compact CNTFET model for circuit design. IEEE Trans. Electron Devices 55, 1317–1327 (2008)

    Article  Google Scholar 

  72. Cazin d’Honincthun, H., Galdin-Retailleau, S., Sée, J., Dollfus, P.: Electron-phonon scattering and ballistic behavior in semiconducting carbon nanotubes. Appl. Phys. Lett. 87, 172112 (2005)

    Article  Google Scholar 

  73. Joos, E.: Decohrence through interaction with the environment. In: Decoherence and the Appearance of a Classical World in Quantum Theory, pp. 41–180. Springer, Berlin/Heidelberg (2003)

    Google Scholar 

  74. Lundstrom, M., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)

    Article  Google Scholar 

  75. Saint-Martin, J., Bournel, A., Dollfus, P.: On the ballistic transport in nanometer-scaled DG MOSFETs. IEEE Trans. Electron Devices 51, 1148–1155 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dollfus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Querlioz, D., Nguyen, HN., Saint-Martin, J. et al. Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J Comput Electron 8, 324–335 (2009). https://doi.org/10.1007/s10825-009-0281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0281-3

Keywords

Navigation