Skip to main content

Application of the kp Method to Device Simulation

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Abstract

As electronic devices approach the sub 10-nm size and new device topologies emerge specifically exploiting quantum mechanical effects, new device simulation tools are needed addressing such issues. Among full quantum approaches, the k ⋅p model is known to provide a reasonably simple way to describe with good accuracy the complex system of valence and conduction bands of many semiconductors, including also their deformations induced by strain, which play a fundamental role in determining the electronic properties of the material. When used within the Non-Equilibrium Green’s Functions framework for the charge transport problem and coupled with Poisson’s equation, the k ⋅p model becomes a powerful tool for the simulation of full nanoelectronic devices featuring lateral confinement and quantum transport.

In this chapter, a review of the k ⋅p model is presented, with special emphasis on its applications to the simulation of nanoelectronic devices. The mathematical model of the so called eight-band version is duly recalled first, including the correction terms accounting for strain. Examples of energy band calculations are provided for III–V semiconductors, which are of great potential for the future development of the nanoelectronic industry, relative to both bulk and confined structures.

Significant examples of application of the k ⋅p model to full device simulation are then given, all of them relative to tunnel FETs. Specific topics include the investigation of strain in homojunction and heterojunction nanowire tunnel FETs, the optimization of complementary tunnel FETs and the evaluation of the performance of inverters built with the latter FETs, the investigation of the effect of interface traps on the same nanowire tunnel FETs.

The main idea that this chapter would like to convey is that in the next future there will most likely be an increasing type and number of nanoelectronic devices for which the k ⋅ p model represents a well targeted simulation basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97(4) (1955)

    Google Scholar 

  2. E. O. Kane: Band structure of indium antimonide. J. Phys. Chem. Solids 1(4), 249–261 (1957)

    Article  Google Scholar 

  3. Yu, P.Y., Cardona, D.M.: Fundamentals of Semiconductors, 4th edn. Springer, NewYork (2010)

    Book  MATH  Google Scholar 

  4. Enderlein, R., Horing, N.J.M.: Fundamentals of Semiconductor Physics and Devices. World Scientific, Singapore (1997)

    Book  MATH  Google Scholar 

  5. Chuang, S.L.: Physics of Optoelectronic Devices. Wiley, New York (1995)

    Google Scholar 

  6. Voon, L.C.L.Y., Willatzen, M.: The k ⋅ p Method. Springer, Berlin (2009)

    Google Scholar 

  7. Cardona, M., Pollak, F.H.: Energy-band structure of germanium and silicon: the k ⋅ p method. Phys. Rev. 142(2), 530 (1966)

    Article  Google Scholar 

  8. Shin, M., Lee, S., Klimeck, G.: Computational study on the performance of si nanowire pMOSFETs based on the k⋅p method. IEEE Trans. Electron Devices 57(9) (2010)

    Google Scholar 

  9. Shin, M.: Full-quantum simulation of hole transport and band-to-band tunneling in nanowires using the k ⋅ p method. J. Appl. Phys. 106, 054505 (2009)

    Article  Google Scholar 

  10. Baccarani, G., Baravelli, E., Gnani, E., Gnudi, A., Reggiani, S.: Theoretical analyses and modeling for nanoelectronics. In: Proc. of the ESSDERC/ESSCIRC Conference, pp. 4–9 (2015)

    Google Scholar 

  11. Esseni, D., Pala, M., Palestri, P., Alper, C., Rollo, T.: A review of selected topics in physics based modeling for tunnel field-effect transistors. Semicond. Sci. Technol. 32, 083005 (2017)

    Article  Google Scholar 

  12. Selmi, L., Caruso, E., Carapezzi, S., Visciarelli, M., Gnani, E., Zagni, N., Pavan, P., Palestri, P., Esseni, D., Gnudi, A., Reggiani, S., Puglisi, F.M., Verzellesi, G.: Modelling nanoscale n-mosfets with III–V compound semiconductor channels: from advanced models for band structures, electrostatics and transport to tcad. In: Proc. of the IEDM Conference, pp. 322–325 (2017)

    Google Scholar 

  13. Vurgaftman, I., Meyer, J.R.: Elimination of spurious solutions from eight-band k⋅p theory. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  Google Scholar 

  14. Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of k⋅p envelope equations. Phys. Rev. B 76(16), 165320 (2007)

    Article  Google Scholar 

  15. Foreman, B.A.: Elimination of spurious solutions from eight-band k⋅p theory. Phys. Rev. B 56(20), R12748–R12751 (1997)

    Article  Google Scholar 

  16. Bir, G.L., Pikus, G.E.: Symmetry and Strain-Induced Effects in Semiconductors. Wiley, NewYork (1974)

    Google Scholar 

  17. Bahder, T.B.: Eight-band k⋅p model of strained zinc-blende crystals. Phys. Rev. B 46(17), 11992–12001 (1990)

    Article  Google Scholar 

  18. Bahder, T.B.: Erratum: Eight-band k⋅p model of strained zinc-blende crystals. Phys. Rev. B 46, 9913 (1992)

    Article  Google Scholar 

  19. Chuang, S.L., Chang, C.S.: k-p method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)

    Google Scholar 

  20. Pan, A., Chui, C.O.: Modeling direct interband tunneling: II. lower-dimensional structures. J. Appl. Phys. 116, 054509 (2014)

    Google Scholar 

  21. Caruso, E., Zerveas, G., Baccarani, G., Czornomaz, L., Daix, N., Esseni, D., Gnani, E., Gnudi, A., Grassi, R., Luisier, M., Markussen, T., Palestri, P., Schenk, A., Selmi, L., Sousa, M., Stokbro, K., Visciarelli, M.: Modeling approaches for band-structure calculation in III–V fet quantum wells. In: Proc. of the EUROSOI-ULIS Conference, pp. 101–104 (2015)

    Google Scholar 

  22. Rau, M., Markussen, T., Caruso, E., Esseni, D., Gnani, E., Gnudi, A., Khomyakov, P.A., Luisier, M., Osgnach, P., Palestri, P., Reggiani, S., Schenk, A., Selmi, L., Stokbro, K.: Performance study of strained III–V materials for ultra-thin body transistor applications. In: Proc. of the ESSDERC Conference, pp. 184–187 (2016)

    Google Scholar 

  23. Visciarelli, M., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Impact of strain on tunneling current and threshold voltage in III-V nanowire TFETs. IEEE Electron Device Letters pp. 560–563 (2016)

    Google Scholar 

  24. Majumdar, K.: Band to band tunneling in III–V semiconductors: Implications of complex band structure, strain, orientation, and off-zone center contribution. J. Appl. Phys. 115(17), 174503 (2014)

    Article  Google Scholar 

  25. Seabaugh, A., Zhang, Q.: Low-voltage tunnel transistors for beyond cmos logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  26. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(73), 329–337 (2011)

    Article  Google Scholar 

  27. Pal, A., Sachid, A.B., Gossner, H., Rao, V.R.: Insights into the design and optimization of tunnel-fet devices and circuits. IEEE Trans. Electron Devices 58(4), 1045–1053 (2011)

    Article  Google Scholar 

  28. Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Drain-conductance optimization in nanowire TFETs by means of a physics-based analytical model. Solid-State Electron. 84, 96–102 (2013)

    Article  Google Scholar 

  29. Zhou, G., Li, R., Vasen, T., Qi, M., Chae, S., Lu, Y., Zhang, Q., Zhu, H., Kuo, J.M., Kosel, T., Wistey, M., Fay, P., Seabaugh, A., Xing, H.: Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 μA/μm at VDS = 0.5 V. In: Proc. of IEEE Int. IEDM Conference, p. 777–780 (2012)

    Google Scholar 

  30. Lake, R., Klimeck, G., R. C.B., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Google Scholar 

  31. Luisier, M., Klimeck, G.: Performance comparisons of tunneling field-effect transistors made of insb, carbon, and gasb-inas broken gap heterostructures. In: Proc. of IEEE Int. IEDM Conference, p. 913–916 (2009)

    Google Scholar 

  32. Baravelli, E., Gnani, E., Grassi, R., Gnudi, A., Reggiani, S., Baccarani, G.: Optimization of n- and p-type tfets integrated on the same inas/alxga1-xsb technology platform. IEEE Trans. Electron Devices 61(1), 178–184 (2014)

    Article  Google Scholar 

  33. Visciarelli, M., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Design guidelines for gasb/inas tfet exploiting strain and device size. Solid-State Electron. pp. 157–162 (2017)

    Google Scholar 

  34. Gandhi, R., Chen, Z., Singh, N., Banerjee, K., Lee, S.: CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤50-mV/decade subthreshold swing. IEEE Electron Device Lett. 32(11), 1504–1506 (2011)

    Article  Google Scholar 

  35. Borg, M., Schmid, H., Moselund, K.E., Signorello, G., Gignac, L., Bruley, J., Breslin, C., Kanungo, P.D., Werner, P., Riel, H.: Vertical III–V nanowire device integration on si(100). Nano Lett. 14(4), 1914–1920 (2014)

    Article  Google Scholar 

  36. Conzatti, F., Pala, M.G., Esseni, D., Bano, E., Selmi, L.: Strain induced performance improvements in inas nanowire tunnel fets. IEEE Trans. Electron Devices 59(8), 2085–2092 (2012)

    Article  Google Scholar 

  37. International technology roadmap for semiconductors—2012. http://www.itrs.net/Links/2012ITRS/Home2012.htm

  38. Conzatti, F., Pala, M.G., Esseni, D., Bano, E., Selmi, L.: A simulation study of strain induced performance enhancements in inas nanowire tunnel-fets. In: Proc. of IEEE Int. IEDM Conference, p. 5.2.1 (2011)

    Google Scholar 

  39. Conzatti, F., Pala, M.G., Esseni, D., Bano, E.: Investigation of localized versus uniform strain as a performance booster in inas tunnel-fets. Solid State Electron. 88, 49–53 (2013)

    Article  Google Scholar 

  40. Visciarelli, M., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Impact of traps and strain on optimized n- and p-type TFETs integrated on the same InAs/AlGaSb technology platform. IEEE Trans. Electron Devices 64(8), 3108–3113 (2017)

    Article  Google Scholar 

  41. Knoch, J., Appenzeller, J.: Modeling of high-performance p-type III–V heterojunction tunnel fets. IEEE Electron Device Lett. 31(4), 305–307 (2010)

    Article  Google Scholar 

  42. Baravelli, E., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Tfet inverters on the same technology platform for low-voltage/low-power applications. IEEE Trans. Electron Devices 61(2), 473–478 (2014)

    Article  Google Scholar 

  43. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective capacitance and drive current for tunnel fet tfet CV/I estimation. IEEE Trans. Electron Devices 56(9), 2092–2098 (2009)

    Article  Google Scholar 

  44. Sinha, S., Yeric, G., Chandra, V., Cline, B., Cao, Y.: Exploring sub-20 nm finfet design with predictive technology models. In: Proc. of DAC Conference, pp. 283–288 (2012)

    Google Scholar 

  45. Passlack, M., Droopad, R., Brammertz, G.: Suitability study of oxide/gallium arsenide interfaces for mosfet applications. IEEE Trans. Electron Devices 57(11), 2944–2956 (2010)

    Article  Google Scholar 

  46. Lin, L., Robertson, J.: Defect states at III–V semiconductor oxide interfaces. Appl. Phys. Lett. 98(8), 082903 (2011)

    Article  Google Scholar 

  47. Pala, M.G., Esseni, D., Conzatti, F.: Impact of interface traps on the IV curves of inas tunnel-fets and mosfets: a full quantum study. In: Proc. of IEEE Int. IEDM Conference, p. 6.6.1 (2012)

    Google Scholar 

  48. Visciarelli, M., Gnani, E., Gnudi, A., Reggiani, S.: A full-quantum simulation study of InGaAs NW MOSFETs including interface traps. In: Proc. of Eur. Solid-State Device Res. Conf. (ESSDERC), p. 180–183 (2016)

    Google Scholar 

  49. Wang, S.W., Vasen, T., Doornbos, G., Oxland, R., Chang, S.W., Li, X., Contreras-Guerrero, R., Holland, M., Wang, C.H., Edirisooriya, M., S.R.R., Ramvall, J.P., Thoms, S., VeUianitis, M.D.G., Hsien, G.C.H., Chang, Y.S., K.M.Y., Yeo, Y.C., C.H.D., Droopad, R., I.G.T., Passlack, M.: Field-effect mobility of inas surface channel nmosfet with low d it scaled gate stack. IEEE Trans. Electron Devices 62(8), 2429–2436 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Gnudi or Susanna Reggiani .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G. (2023). Application of the kp Method to Device Simulation. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics