Skip to main content
Log in

Monte Carlo simulation of double gate MOSFET including multi sub-band description

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new two-dimensional self-consistent Monte-Carlo simulator including the multi sub-band transport in a 2D electron gas is described and applied to an ultra-thin Double Gate MOSFET. This approach takes into account both out of equilibrium transport and quantization effects. This method improves significantly microscopic insight into the operation of deep sub-100 nm CMOS devices. We analyze the ballistic, quantization and roughness effects in a 12 nm-long DGMOS transistor. In particular, we focus on the link between non-stationary transport and the evolution of sub-band occupancy along the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITRS 2005 Edition, http://public.itrs.net/

  2. Saint-Martin, J., et al.: Comparison of multiple-gate MOSFET architectures using Monte Carlo simulation. Solid-State Electron. 50(1), 94 (2006)

    Article  Google Scholar 

  3. Saint-Martin, J., et al.: On the ballistic transport in nanometer-scaled DG MOSFET. IEEE Trans. Electron Dev. 51(7), 1148 (2004)

    Article  Google Scholar 

  4. Saint-Martin, J., et al.: Multi sub-band Monte Carlo simulation of ultra-thin Double Gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21(4), L29 (2006)

    Article  Google Scholar 

  5. Venugopal, R., et al.: Simulating quantum transport in nanoscale MOSFETs: Real vs. mode space approaches. J. Appl. Phys. 92(7), 3730 (2002)

    Google Scholar 

  6. Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48(4), 2244 (1993)

    Article  Google Scholar 

  7. Monsef, F., et al.: Electron transport in Si/SiGe modulation-doped heterostructures using Monte Carlo simulation. J. Appl. Phys. 95(7), 35870 (2004)

    Article  Google Scholar 

  8. Dollfus, P.: Si/Si1−xGex heterostructures: Electron transport and field-effect transistor operation using Monte Carlo simulation. J. Appl. Phys. 82(8), 3911 (1997)

    Article  Google Scholar 

  9. Esseni, D., et al.: Physically based modeling of low field electron mobility in ultrathin single- and double gate SOI n-MOSFETs. IEEE Trans. Electron Dev. 50(12), 2445 (2003)

    Article  Google Scholar 

  10. Donetti, L., et al.: Influence of acoustic phonon confinement on electron mobility in ultrathin silicon insulator layers. Appl. Phys. Lett. 88(12), 122108 (2006)

    Article  Google Scholar 

  11. Goodnick, S.M., et al.: Surface roughness at the Si(100)-SiO$_2$ interface. Phys. Rev. B 32(12), 8171 (1985)

    Article  Google Scholar 

  12. Sakaki, H., et al.: Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51(23), 1934 (1987)

    Article  Google Scholar 

  13. Aubry-Fortuna, V., et al.: Electron effective mobility in strained Si/Si1−xGex MOS devices using Monte Carlo simulation. Solid-State Electron. 49(8), 1320 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saint-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Martin, J., Bournel, A., Aubry-Fortuna, V. et al. Monte Carlo simulation of double gate MOSFET including multi sub-band description. J Comput Electron 5, 439–442 (2006). https://doi.org/10.1007/s10825-006-0043-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-0043-4

Keywords

Navigation