Skip to main content

Advertisement

Log in

Understanding Chlorella vulgaris acclimation strategies on textile supports can improve the operation of biofilm-based systems

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The interest in microalgae biofilm-based systems has been increasing lately due to their high potential for biomass production. However, more studies focusing on the first stages of this bioprocess, such as support selection and inoculum properties, which may finally affect biomass productivity, are required. The aim of this study was therefore to assess the impact of support nature and inoculum properties on microalgae biofilm productivity and physiology. Results suggest that physico-chemical properties of the support (micro-texture, hydrophobicity and chemical functional groups) affect the attachment of Chlorella vulgaris. Significant differences in cell-distribution pattern and biofilm structure on polyamide-based (Terrazzo) and cotton-based fabrics were observed. Compared to Cotton, cells grown on Terrazzo showed higher biomass productivity (3.20-fold), photosynthetic capacity (1.32-fold) and carbohydrate pool (1.36-fold), which may be explained by differences in light availability due to support micro-texture. A high inoculum density resulted in a lower biofilm growth, likely due to a lower light/nutrient availability for the cells. Furthermore, when immobilized on fabrics, cells pre-acclimated to 350 μmol photons m−2 s−1 grew faster than those pre-acclimated to low light (50 μmol photons m−2 s−1), demonstrating the influence of light-history of the inoculum cells on biofilm productivity. Therefore, this work confirmed the importance of support and inoculum properties for biofilm-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  • Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from enchanted rock and related algal species. Phycol Stud Univ Texas IV:1–95

    Google Scholar 

  • Brockhagen B (2021) Improved growth and harvesting of microalgae Chlorella vulgaris on textile fabrics as 2.5D substrates. AIMS Bioeng 8:16–24

    CAS  Google Scholar 

  • Cardinale BJ, Palmer MA, Swan CM, Brooks S, Poff NL (2002) The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83:412–422

    Article  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Chung C, Lee M, Choe E (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • Corcoll N, Bonet B, Leira M, Montuelle B, Tlili A, Guasch H (2012) Light history influences the response of fluvial biofilms to Zn exposure. J Phycol 48:1411–1423

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yuan W, Cao J (2013) Effects of surface texturing on microalgal cell attachment to solid carriers. Int J Agric Biol Eng 6:44–54

    Google Scholar 

  • De Assis LR, Calijuri ML, Assemany PP, Berg EC, Febroni LV, Bartolomeu TA (2019) Evaluation of the performance of different materials to support the attached growth of algal biomass. Algal Res 39:101440

    Article  Google Scholar 

  • Fanesi A, Paule A, Bernard O, Briandet R, Lopes F (2019) The architecture of monospecific microalgae biofilms. Microorganisms 7:352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanesi A, Lavayssière M, Breton C, Bernard O, Briandet R, Lopes F (2021) Shear stress affects the architecture and cohesion of Chlorella vulgaris biofilms. Sci Rep 11:4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanesi A, Martin T, Breton C, Bernard O, Briandet R, Lopes F (2022) The architecture and metabolic traits of monospecific photosynthetic biofilms studied in a custom flow-through system. Biotechnol Bioeng 119:2459–2470

    Article  CAS  PubMed  Google Scholar 

  • Genin SN, Stewart Aitchison J, Grant Allen D (2014) Design of algal film photobioreactors: Material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Wen Z (2014) Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system. Bioresour Technol 171:50–58

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Jarboe D, Wen Z (2015) Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol 99:5781–5789

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Zhao X, Mascarenhas V, Wen Z (2016) Effects of the surface physico-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnol Biofuels 9:38

    Article  Google Scholar 

  • Hart R, In-na P, Kapralov MV, Lee JGM, Caldwell GS (2021) Textile-based cyanobacteria biocomposites for potential environmental remediation applications. J Appl Phycol 33:1525–1540

    Article  CAS  Google Scholar 

  • Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hoghoghifard S, Mokhtari H, Dehghani S (2016) Improving the conductivity of polyaniline-coated polyester textile by optimizing the synthesis conditions. J Ind Text 46:611–623

    Article  CAS  Google Scholar 

  • Huang Y, Xiong W, Liao Q, Fu Q, Xia A, Zhu X, Sun Y (2016) Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Bioresour Technol 222:367–373

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zheng Y, Li J, Liao Q, Fu Q, Xia A, Fu J, Sun Y (2018) Enhancing microalgae biofilm formation and growth by fabricating microgrooves onto the substrate surface. Bioresour Technol 261:36–43

    Article  CAS  PubMed  Google Scholar 

  • In-na P, Lee J, Caldwell G (2022) Living textile biocomposites deliver enhanced carbon dioxide capture. J Ind Text 51:5683S-5707S

    Article  CAS  Google Scholar 

  • Irving TE, Allen DG (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92:283–294

    Article  CAS  PubMed  Google Scholar 

  • Ji B, Zhang W, Zhang N, Wang J, Lutzu GA, Liu T (2014) Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp. Bioprocess Biosyst Eng 37:1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  PubMed  Google Scholar 

  • Kang E, Kim M, Oh JS, Park DW, Shim SE (2012) Electrospun BMIMPF6/nylon 6,6 nanofiber chemiresistors as organic vapour sensors. Macromol Res 20:372–378

    Article  CAS  Google Scholar 

  • Key T, McCarthy A, Campbell DA, Six C, Roy S, Finkel ZV (2010) Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ Microbiol 12:95–104

    Article  CAS  PubMed  Google Scholar 

  • Kostajnšek K, Zupin Ž, Hladnik A, Dimitrovski K (2021) Optical assessment of porosity parameters in transparent woven fabrics. Polymers 13:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Li SF, Fanesi A, Martin T, Lopes F (2021) Biomass production and physiology of Chlorella vulgaris during the early stages of immobilized state are affected by light intensity and inoculum cell density. Algal Res 59:102453

  • Li T, Strous M, Melkonian M (2017) Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnx218

  • López-Sandoval DC, Rodríguez-Ramos T, Cermeño P, Sobrino C, Maranon E (2014) Photosynthesis and respiration in marine phytoplankton: Relationship with cell size, taxonomic affiliation, and growth phase. J Exp Mar Biol Ecol 457:151–159

    Article  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Martínez C, Bernard O, Mairet F (2018) Maximizing microalgae productivity in a light-limited chemostat. IFAC-Pap 51:735–740

    Google Scholar 

  • Moreno Osorio JH, Pinto G, Pollio A, Frunzo L, Lens PNL, Esposito G (2019) Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresour Bioprocess 6:27

    Article  Google Scholar 

  • Moreno Osorio JH, De Natale A, Del Mondo A, Lens PNL, Esposito G, Pollio A (2020) Early colonization stages of fabric carriers by two Chlorella strains. J Appl Phycol 32:3631–3644

    Article  CAS  Google Scholar 

  • Ozkan A, Berberoglu H (2011) Adhesion of Chlorella vulgaris on hydrophilic and hydrophobic surfaces. IMECE 169–178

  • Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Mar Biol 83:231–238

    Article  Google Scholar 

  • Roberts S, Sabater S, Beardall J (2004) Benthic microalgal colonization in streams of different riparian cover and light availability. J Phycol 40:1004–1012

    Article  Google Scholar 

  • Roostaei J, Zhang Y, Gopalakrishnan K, Ochocki AJ (2018) Mixotrophic microalgae biofilm: a novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Sci Rep 8:12528

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnurr PJ, Espie GS, Allen DG (2014) The effect of light direction and suspended cell concentrations on algal biofilm growth rates. Appl Microbiol Biotechnol 98:8553–8562

    Article  CAS  PubMed  Google Scholar 

  • Shahzadi L, Zeeshan R, Yar M, Qasim SB, Chadhry AA, Khan AF, Muhammad N (2018) Biocompatibility through cell attachment and cell proliferation studies of nylon 6/chitosan/Ha electrospun mats. J Polym Environ 26:2030–2038

    Article  CAS  Google Scholar 

  • Shen Y, Yang T, Zhu W, Zhao Y (2017) Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor. J Appl Phycol 29:833–841

    Article  CAS  Google Scholar 

  • Sukenik A, Bennett J, Mortain-Bertrand A, Falkowski PG (1990) Adaptation of the photosynthetic apparatus to irradiance in Dunaliella tertiolecta: a kinetic study. Plant Physiol 92:891–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsavatopoulou VD, Manariotis ID (2020) The effect of surface properties on the formation of Scenedesmus rubescens biofilm. Algal Res 52:102095

    Article  Google Scholar 

  • Urabe J, Kagami M (2001) Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa. Limnology 2:111–117

    Article  Google Scholar 

  • Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941

    Article  Google Scholar 

  • Vivier B, Claquin P, Lelong C, Lesage Q, Peccate M, Hamel B, Georges M, Bourguiba A, Sebaibi N, Boutouil M, Goux D, Dauvin JC, Orvain F (2021) Influence of infrastructure material composition and microtopography on marine biofilm growth and photobiology. Biofouling 37:740–756

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Horn H (2017) Optical coherence tomography in biofilm research: A comprehensive review. Biotechnol Bioeng 114:1386–1402

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu J, Liu T (2015) The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnol Biofuels 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra. Oecologia 17:281–291

    Article  PubMed  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Zhang W, Wang J, Wang J, Liu T (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like also to acknowledge Nathalie Ruscassier for SEM observation, Jamila El Bekri for contact angle measurement and Hélène Santigny for her technical support during the experiments.

Funding

S. F. Li was supported by the China Scholarship Council (CSC) and the authors would like to thanks for founding the LabeX LaSIPS project Greenbelt and the ANR project PhotobiofilmExplorer (ANR-20-CE43-0008) managed by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Contributions

S. F. Li, A. Fanesi, T. Martin and F. Lopes designed the experiments, S. F. Li and A. Fanesi conducted the experiments, S. F. Li, A. Fanesi and F. Lopes analyzed the data, S. F. Li and A. Fanesi wrote the manuscript, F. Lopes revised the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Filipa Lopes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2866 KB)

Supplementary file2 (DOCX 2867 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S.F., Fanesi, A., Martin, T. et al. Understanding Chlorella vulgaris acclimation strategies on textile supports can improve the operation of biofilm-based systems. J Appl Phycol 35, 1061–1071 (2023). https://doi.org/10.1007/s10811-023-02963-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02963-8

Keywords

Navigation