Skip to main content

Advertisement

Log in

Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The feasibility of attached culture Chlorella vulgaris in a porous substratum biofilm reactor (PSBR) for simultaneous wastewater treatment and biofuel production was investigated. The characteristics, including algal biofilm growth, lipid yield, nutrient removal, and energy efficiency of the outdoor cultures, were investigated under the influence of both inoculum densities and the percent submerged area. A maximum biofilm productivity of 57.87 g m−2 d−1 with 81.9 % adhesion was achieved under optimal conditions (inoculum density of 18 g m−2 and the percent submerged area of 5.7 %). The lipid content and lipid yield were 38.56 % and 27.25 g m−2 d−1, respectively. Meanwhile, the algae removed 99.95 % ammonia, 96.05 % total nitrogen (TN), and 99.83 % total phosphorus (TP). Further, the energy life cycle for the PSBR was analyzed. The biomass productivity per unit irradiance was up to 4.6 g MJ−1 (photosynthetic efficiency of 10.65 %). The PSBR was considered to be economically feasible due to the net energy ratio of 1.3 (>1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aziz MA, Ng WJ (1992) Feasibility of wastewater treatment using the activated-algae process. Bioresour Technol 40:205–208

    Article  CAS  Google Scholar 

  • Bender DA, Bender AE (1999) Benders’ dictionary of nutrition and food technology. CRC Press, edition 7, pp 149

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boelee NC, Janssen M, Temmink H, Taparaviciute L, Khiewwijit R, Janoska A, Buisman CJN, Wijffels RH (2014) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26:1439–1452

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chris JH, David NT (2011) Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol 102:5775–5787

    Article  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Fallowfield HJ, Garrett MK (1985) The treatment of wastes by algal culture. J Appl Bacteriol 59:187S–205S

    Article  Google Scholar 

  • Grima EM, Fernandez J, Acien FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  Google Scholar 

  • Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102:6687–6695

    Article  CAS  PubMed  Google Scholar 

  • Kuhl M, Glud R, Ploug H, Ramsing N (1996) Microenvironmental control of photosynthesis and photosynthesis coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2012) Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoides cultivated in highly concentrated municipal wastewater. Biotechnol Bioeng 109:2222–2229

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Fu W, An N, Zhou Q (2012) Energy flow: a new method of evaluating the energy consumption in a wastewater treatment system. Acta Scien Circum 32:1247–1252

    Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Wang H (2013b) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Zhu Y, Tao YJ, Zhang YM, Li AF, Li T, Sang M, Zhang CW (2013a) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6:98–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Min M, Hu B, Mohr MJ, Shi A, Ding J, Sun Y, Ruan R (2014) Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment-a case study. Appl Biochem Biotechnol 172:1390–1406

    Article  CAS  PubMed  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Mulbry W, Kangas P, Kondrad S (2010) Toward scrubbing the bay: nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries. Ecol Eng 36:536–541

    Article  Google Scholar 

  • Murphy TE (2013) Artificial leaf for biofuel production and harvesting: transport phenomena and energy conversion. PhD dissertation, The University of Texas at Austin

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  CAS  PubMed  Google Scholar 

  • Pizarro C, Kebede-Westhead E, Mulbry W (2002) Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure. J Appl Phycol 14:469–473

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Przytocka-Jusiak M, Blaszczyk M, Kosinska E (1984) Removal of nitrogen from industrial wastewaters with the use of algal rotating disks and denitrification packed bed reactor. Water Res 18:1077–1082

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Cui Y, Yuan W (2013) Flocculation optimization of microalga Nannochloropsis oculata. Appl Biochem Biotechnol 169:2049–2063

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Yuan W, Pei Z, Mao E (2008) Culture of microalga Botryococcus in livestock wastewater. Trans ASABE 51:1395–1400

    Article  Google Scholar 

  • Shen Y, Zhang H, Xu X, Lin X (2015) Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii. Bioprocess Biosyst Eng 38:481–488

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Wang J, Liu J, Liu T (2015) The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnol Biofuels 8:1–12

    Article  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Miyachi S, Kurano N (2001) Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 23:21–26

    Article  CAS  Google Scholar 

  • Zhang WD, Wang JF, Wang JL (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Fuzhou Administration of Science and Technology (Nos. 2015-G-73 and 2015-G-74) and the Fujian Provincial Department of Science and Technology (2015H0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Yang, T., Zhu, W. et al. Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor. J Appl Phycol 29, 833–841 (2017). https://doi.org/10.1007/s10811-016-0981-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0981-6

Keywords

Navigation