Skip to main content
Log in

Algal biofilm ponds for polishing secondary effluent and resource recovery

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In order to reduce the cost of microalgae harvesting, biofilm algal cultivations have received attention as a potential platform for algal biomass production and wastewater treatment. Two 50-L ponds containing vertically oriented geotextiles, cotton textiles, and polyethylene sheets were fed secondary effluent to examine the growth of algal biofilms. The removal of total phosphorus, PO43−-P and NO3-N ranged from 52 to 97%, 59 to 93%, and 0 to 99%, respectively. The highest biomass productivity was 1.4 and 0.5 g m−2 day−1, and the lipid content of the attached biomass was quite low, 0.36 and 0.48%, in the cotton textile and polyethylene-baffled pond, respectively. The lipid content of the suspended biomass of the cotton textile and polyethylene pond was very low and similar (0.5%), but it increased to 13.8 and 3.4%, respectively, after a starvation period of 13 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA, AWWA, WEF (2012) Standard Methods for the Examination of Water and Wastewater, 22nd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

    Google Scholar 

  • Aravantinou AF, Theodorakopoulos MA, Manariotis ID (2013) Selection of microalgae for wastewater treatment and potential lipids production. Bioresour Technol 147:130–134

    Article  CAS  PubMed  Google Scholar 

  • Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Toxic effects of ZnO nanoparticles to freshwater and marine microalgae cultures. Ecotoxicol Environ Saf 114:109–116

    Article  CAS  PubMed  Google Scholar 

  • Aravantinou AF, Barkonikou EF, Manariotis ID (2017) Microalgae biomass growth and lipid production using primary treated wastewater. Desalin Water Treat 91:228–234

    Article  CAS  Google Scholar 

  • Babu MA, Hes EMA, van der Steen NP, Hooijmans CM, Gijzen HJ (2010) Nitrification rates of algal-bacterial biofilms in wastewater stabilization ponds under light and dark conditions. Ecol Eng 36:1741–1746

    Article  Google Scholar 

  • Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111:2436–2445

    Article  CAS  PubMed  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933

    Article  CAS  PubMed  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2014a) Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater. Ecol Eng 64:213–221

    Article  Google Scholar 

  • Boelee NC, Janssen M, Temmink H, Taparavičiūtė L, Khiewwijit R, Jánoska Á, Buisman CJN, Wijffels RH (2014b) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26:1439–1452

    Article  CAS  Google Scholar 

  • Buhr HO, Miller SB (1983) A dynamic model of the high-rate algal-bacterial wastewater treatment pond. Water Res 17:29–37

    Article  CAS  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Craggs R, Park J, Sutherland D, Heubeck S (2015) Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems. J Appl Phycol 27:1913–1922

    Article  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Fica ZT, Sims RC (2016) Algae-based biofilm productivity utilizing dairy wastewater: effects of temperature and organic carbon concentration. J Biol Eng 10:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gao F, Yang Z-H, Li C, Zeng GM, Ma DH, Zhou L (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179:8–12

    Article  CAS  PubMed  Google Scholar 

  • Genin SN, Aitchison JS, Allen DG (2014) Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Wen Z (2014) Yearlong evaluation of performance and durability of a pilot-scale revolving algal biofilm (RAB) cultivation system. Bioresour Technol 171:50–58

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Jarboe D, Wen Z (2015) Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol 99:5781–5789

    Article  CAS  PubMed  Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, J C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  PubMed  Google Scholar 

  • Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25: 1413–1420

    Article  CAS  Google Scholar 

  • Oron G, Shelef G, Levi A, Meydan A, Azov Y (1979) Algae/bacteria ratio in high-rate ponds used for waste treatment. Appl Environ Microbiol 38:570–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago AF, Calijuri ML, Assemany PP, Calijuri MC, dos Reis AJD (2013) Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent. Environ Technol 34:1877–1885

    Article  CAS  PubMed  Google Scholar 

  • Schnurr PJ, Allen DG (2015) Factors affecting algae biofilm growth and lipid production: a review. Renew Sust Energ Rev 52:418–429

    Article  CAS  Google Scholar 

  • Schumacher G, Sekoulov I (2002) Polishing of secondary effluent by an algal biofilm process. Water Sci Technol 46:83–90

    Article  CAS  PubMed  Google Scholar 

  • Shayan SI, Agblevor FA, Bertin L, Sims RC (2016) Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor. Bioresour Technol 211:527–533

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Mennerich A, Urban B (2016) The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment. Bioresour Technol 218:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Sukačová K, Trtílek M, Rataj T (2015) Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res 71:55–63

    Article  CAS  PubMed  Google Scholar 

  • Tao Q, Gao F, Qian C-Y, Guo X-Z, Zheng Z, Yang Z-H (2017) Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Res 21:9–15

    Article  Google Scholar 

  • Vergini S, Aravantinou AF, Manariotis ID (2016) Harvesting of freshwater and marine microalgae by common coagulants and magnetic microparticles. J Appl Phycol 28:1041–1049

    Article  CAS  Google Scholar 

  • Wang JH, Zhuang LL, Xu XQ, Deantes-Espinosa VM, Wang XX, Hu HY (2018) Microalgal attachment and attached systems for biomass production and wastewater treatment. Renew Sust Energ Rev 92:331–342

    Article  Google Scholar 

  • Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M (2008) Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front Environ Sci Eng 2:446–451

    Article  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  PubMed  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis D. Manariotis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orfanos, A.G., Manariotis, I.D. Algal biofilm ponds for polishing secondary effluent and resource recovery. J Appl Phycol 31, 1765–1772 (2019). https://doi.org/10.1007/s10811-018-1731-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1731-8

Keywords

Navigation