Skip to main content
Log in

Co-cultivation and stepwise cultivation of Chaetoceros muelleri and Amphora sp. for fucoxanthin production under gradual salinity increase

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In a seawater-based open pond microalgae cultivation system salinity will increase gradually over time due to evaporative loss. Continuous salinity increase would lead to non-optimal salinities which negatively affect the biomass and fucoxanthin productivity. To increase and maintain high overall biomass and fucoxanthin productivity, even in the non-optimal salinity zone, two cultivation methods for marine and halotolerant microalgae were carried out, co-cultivation and stepwise cultivation (sequential cultivation). Two fucoxanthin-producing diatoms, Chaetoceros muelleri (marine) and Amphora sp. (halotolerant), were cultivated at non-optimal salinities between 59 and 65‰. Stepwise cultivation showed approximately 63% higher total biomass and 47% higher fucoxanthin productivity than that of co-culture. The ability to reutilize culture media in the stepwise cultivation increases the sustainability of that method. The use of a stepwise culture regime, coupled with a regimen of gradually increasing salinity, provides the possibility of year round fucoxanthin production from microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Airanthi M, Hosokawa M, Miyashita K (2011) Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci 76:C104–C111

    Article  CAS  PubMed  Google Scholar 

  • Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56

    Article  CAS  Google Scholar 

  • Bhola VK, Swalaha FM, Nasr M, Kumari S, Bux F (2016) Physiological responses of carbon-sequestering microalgae to elevated carbon regimes. Eur J Phycol 51:401–412

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2016) Chemically-mediated interactions in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Cham, pp 321–357

    Chapter  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitigat Adapt Strat Global Change 18:13–25

    Article  Google Scholar 

  • Boruff BJ, Moheimani NR, Borowitzka MA (2015) Identifying locations for large-scale microalgae cultivation in Western Australia: a GIS approach. Appl Energy 149:379–391

    Article  Google Scholar 

  • Brand LE (1984) The salinity tolerance of forty-six marine phytoplankton isolates. Estuar Coast Shelf Sci 18:543–556

    Article  CAS  Google Scholar 

  • Cermeño P, Figueiras FG (2008) Species richness and cell-size distribution size structure of phytoplankton communities. Mar Ecol Prog Ser 357:79–85

    Article  Google Scholar 

  • Cosgrove JJ, Borowitzka MA (2010) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Borowitzka MA, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Dao LH, Beardall J (2016) Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere 147:420–429

    Article  CAS  PubMed  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14

    Article  CAS  Google Scholar 

  • Fon Sing S (2010) Strain selection and outdoor cultivation of halophilic microalgae with potential for large-scale biodiesel production. PhD Thesis, Murdoch University, Western Australia 221 pp

  • Gómez-Loredo A, Benavides J, Rito-Palomares M (2016) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J Appl Phycol 28:849–860

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Gu N, Lin Q, Li G, Tan Y, Huang L, Lin J (2012) Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng Life Sci 12:631–637

    Article  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Imada N, Kobayashi K, Tahara K, Oshima Y (1991) Production of an autoinhibitor by Skeletonema costatum and its effect on the growth of other phytoplankton. Nippon Suisan Gakkaishi 57:2285–2290

    Article  CAS  Google Scholar 

  • Indrayani I (2017) Isolation and characterization of microalgae with commercial potential. PhD Thesis, Murdoch University, Western Australia 214 pp

  • Ishika T, Bahri PA, Laird DW, Moheimani NR (2018) The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. J Appl Phycol 30:1453–1464

    Article  CAS  Google Scholar 

  • Ishika T, Moheimani NR, Bahri PA, Laird DW, Blair S, Parlevliet D (2017) Halo-adapted microalgae for fucoxanthin production: effect of incremental increase in salinity. Algal Res 28:66–73

    Article  Google Scholar 

  • Jørgensen EG (1956) Growth inhibiting substances formed by algae. Physiol Plant 9:712–726

    Article  Google Scholar 

  • Kim SM, Jung Y-J, Kwon O-N, Cha KH, Um B-H, Chung D, Pan C-H (2012a) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Kang S-W, Kwon O-N, Chung D, Pan C-H (2012b) Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J Korean Soc Appl Biol Chem 55:477–483

    Article  CAS  Google Scholar 

  • Louda JW, Li J, Liu L, Winfree MN, Baker EW (1998) Chlorophyll-a degradation during cellular senescence and death. Org Geochem 29:1233–1251

    Article  CAS  Google Scholar 

  • Moheimani NR (2013a) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    Article  CAS  Google Scholar 

  • Moheimani NR (2013b) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J Appl Phycol 25:167–176

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284

    Chapter  Google Scholar 

  • Novoveská L, Franks DT, Wulfers TA, Henley WJ (2016) Stabilizing continuous mixed cultures of microalgae. Algal Res 13:126–133

    Article  Google Scholar 

  • Phatarpekar P, Sreepada R, Pednekar C, Achuthankutty C (2000) A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture 181:141–155

    Article  CAS  Google Scholar 

  • Satoh K, Smith CM, Fork DC (1983) Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata. Plant Physiol 73:643–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon E, Abu-Ghannam N (2017) Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J Appl Phycol 29:1027–1036

    Article  CAS  Google Scholar 

  • Sigaud TCS, Aidar E (1993) Salinity and temperature effects on the growth and chlorophyll-α content of some planktonic aigae. Bol Inst Oceanogr 41:95–103

    Article  Google Scholar 

  • Takagi M, Karseno YT (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Terasaki M, Narayan B, Kamogawa H, Nomura M, Stephen NM, Kawagoe C, Hosokawa M, Miyashita K (2012) Carotenoid profile of edible Japanese seaweeds: an improved HPLC method for separation of major carotenoids. J Aquat Food Prod Technol 21:468–479

    Article  CAS  Google Scholar 

  • Torzillo G, Vonshak A (2013) Environmental stress physiology with reference to mass cultures. In: Richmond A (ed) Handbook of microalgal mass cultures. Blackwell, Oxford, pp 90–113

    Chapter  Google Scholar 

  • Venâncio C, Anselmo E, Soares A, Lopes I (2017) Does increased salinity influence the competitive outcome of two producer species? Environ Sci Pollut Res 24:5888–5897

    Article  CAS  Google Scholar 

  • Yingying S, Changhai W, Jing C (2008) Growth inhibition of the eight species of microalgae by growth inhibitor from the culture of Isochrysis galbana and its isolation and identification. J Appl Phycol 20:315–321

    Article  CAS  Google Scholar 

  • Zarekarizi A, Hoffmann L, Burritt D (2018) Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits. J Appl Phycol. https://doi.org/10.1007/s10811-018-1558-3

  • Zou D (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Emeka G. Nwoba, PhD student, Algae R& D Centre, School of Veterinary and Life Sciences, Murdoch University, Western Australia, for his assistance in extracting fucoxanthin and lipid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid R Moheimani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishika, T., Laird, D.W., Bahri, P.A. et al. Co-cultivation and stepwise cultivation of Chaetoceros muelleri and Amphora sp. for fucoxanthin production under gradual salinity increase. J Appl Phycol 31, 1535–1544 (2019). https://doi.org/10.1007/s10811-018-1718-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1718-5

Keywords

Navigation