Skip to main content
Log in

Isolation of polyphenols with anticancer activity from the Baltic Sea brown seaweed Fucus vesiculosus using bioassay-guided fractionation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Brown seaweeds have been used in phytotherapy since ancient times. A multitude of medical effects have been reported for their ingredients which also cover anticancer activities. Though being the most common brown seaweed in the Baltic Sea, nothing is known—apart from our recent publication (Geisen et al. Mar Drugs 13:4470-4491, 2015)—about the anticancer potential of the Bladderwrack, Fucus vesiculosus L., grown in this particular habitat with low salinity and nontidal shores. The aim of the present study was to investigate systematically the alga’s cytotoxic potential against human pancreatic cancer cells and to develop a purification procedure for the active compounds by using a bioassay-guided fractionation approach. Four out of six crude extracts showed considerable cytotoxic activity against Panc89 cells, three of which were considerably active against PancTU1 cells, as well. The most active crude extract revealed an effective half maximal concentration (EC50) of 72 μg mL−1 against Panc89 and of 77 μg mL−1 against PancTU1 cells after 72 h of treatment. The multistep purification procedure established for this extract resulted in a fourfold reduction of the EC50. Monitoring of each crude extract and fraction via 1H-NMR spectroscopy revealed a characteristic fingerprint which was significantly correlated with the activity. Structural analysis of the most active fractions revealed two similar molecules belonging to the group of polyphenols. Further separation is needed to present the chemical structure in all molecular details. The results show that F. vesiculosus from the Baltic Sea holds potent and novel anticancer substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdala-Díaz RT, Cabello-Pasini A, Pérez-Rodríguez E, Conde Álvarez RM, Figueroa FL (2006) Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol 148:459–465

    Article  Google Scholar 

  • Alekseyenko TV, Zhanayeva SY, Venediktova AA, Zvyagintseva TN, Kuznetsova TA, Besednova NN, Korolenko TA (2007) Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bull Exp Biol Med 143:730–732

    Article  CAS  PubMed  Google Scholar 

  • AACR—American Association for Cancer Research (2014) AACR cancer progress report 2014. Clin Cancer Res 20:SI–S112

    Google Scholar 

  • Appari M, Babu KR, Kaczorowski A, Gross W, Herr I (2014) Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 45:1391–1400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athukorala Y, Kim KN, Jeon YJ (2006) Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Bäck S, Collins JC, Russell G (1992) Effects of salinity on growth of Baltic and Atlantic Fucus vesiculosus. Br Phycol J 27:39–47

    Article  Google Scholar 

  • Béress A, Wassermann O, Bruhn T, Béress L, Kraiselburd EN, Gonzalez LV, De Motta GE, Chavez PI (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56:478–488

    Article  PubMed  Google Scholar 

  • BMBF - Bundesministerium für Bildung und Forschung (2008) Krebsforschung im Fokus, Gemeinsam für die Patienten, Presseworkshop des Bundesministeriums für Bildung und Forschung, 13. und 14. Februar 2008, Köln

  • Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher AM, Boisson-Vidal C (1999) Further data on the structure of brown seaweed fucans: relationship with anticoagulant activity. Carbohydr Res 319:154–165

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Peters AF, Coelho SM (2011) Brown algae. Curr Biol 21:R573–R575

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Connan S, Delisle F, Deslandes E, Ar Gall E (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46

    Article  CAS  Google Scholar 

  • Coombe DR, Parish CR, Ramshaw IA, Snowden JM (1987) Analysis of the inhibition of tumour metastasis by sulphated polysaccharides. Int J Cancer 39:82–88

    Article  CAS  PubMed  Google Scholar 

  • Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552

    Article  CAS  PubMed  Google Scholar 

  • Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11:2399–2419

    Article  CAS  PubMed  Google Scholar 

  • DG Mare—DG Maritime Affairs and Fisheries (2013) Study in support of Impact Assessment work on Blue Biotechnology. Interim Report FWC MARE/2012/06–SC E1/2012/01

  • Draget KI, Smidsrød O, Skjag-Braek G (2005) Alginates from algae. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Wiley-VCH, Weinheim, pp 1–30

    Google Scholar 

  • Dürig J, Bruhn T, Zurborn KH, Gutensohn K, Bruhn HD, Béress L (1997) Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res 85:479–491

    Article  PubMed  Google Scholar 

  • Fitton JH (2003) Brown marine algae: a survey of therapeutic potentials. Altern Complement Ther 9:29–33

    Article  Google Scholar 

  • Flöthe CR, Molis M, Kruse I, Weinberger F, John U (2014) Herbivore-induced defence response in the brown seaweed Fucus vesiculosus (Phaeophyceae): temporal pattern and gene expression. Eur J Phycol 49:356–369

    Article  Google Scholar 

  • Folmer F, Jaspars M, Dicato M, Diederich M (2010) Photosynthetic marine organisms as a source of anticancer compounds. Phytochem Rev 9:557–579

    Article  CAS  Google Scholar 

  • Fürhaupter K, Grage A, Wilken H, Meyer T (2008) Kartierung mariner Pflanzenbestände im Flachwasser der Ostseeküste – Schwerpunkt Fucus und Zostera. Bericht des Landesamtes für Natur und Umwelt des Landes Schleswig-Holstein (LANU)

  • Geiselman JA, McConnell OJ (1981) Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. J Chem Ecol 7:1115–1133

    Article  CAS  PubMed  Google Scholar 

  • Geisen U, Zenthoefer M, Peipp M, Kerber J, Plenge J, Managò A, Fuhrmann M, Geyer R, Hennig S, Adam D, Piker L, Rimbach G, Kalthoff H (2015) Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells. Mar Drugs 13:4470–4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaneh P, Costello E, Neoptolemos JP (2007) Biology and management of pancreatic cancer. Gut 56:1134–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goecke F, Labes A, Wiese J, Imhoff JF (2012) Dual effect of macroalgal extracts on growth of bacteria in Western Baltic Sea. Rev Biol Mar Oceanogr 47:75–86

    Article  Google Scholar 

  • Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 22:315–326

    Article  CAS  Google Scholar 

  • Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffernan N, Brunton NP, FitzGerald RJ, Smyth TJ (2015) Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar Drugs 13:509–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Heo SJ, Jeon YJ (2009) Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B 95:101–107

    Article  CAS  PubMed  Google Scholar 

  • Hoppe HA, Levring T, Tanaka Y (1979) Marine algae in pharmaceutical science. de Gruyter, Berlin, New York

    Google Scholar 

  • Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K (2004) Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARy ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta 1675:113–119

    Article  CAS  PubMed  Google Scholar 

  • Hussain E, Wang LJ, Jiang B, Riaz S, Butt GY, Shi DY (2016) A review of the components of brown seaweeds as potential candidates in cancer therapy. RSC Adv 6:12592–12610

    Article  CAS  Google Scholar 

  • Isaza Martínez JH, Torres Castañeda HG (2013) Preparation and chromatographic analysis of phlorotannins. J Chromatogr Sci 51:825–838

    Article  Google Scholar 

  • Itoh H, Noda H, Amano H, Zhuaug C, Mizuno T, Ito H (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052

    CAS  PubMed  Google Scholar 

  • Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534

    Article  Google Scholar 

  • Kaplan W (2013) Background Paper 6.5—cancer and cancer therapeutics. In: World Health Organization (ed) Priority medicines for Europe and the world: update 2013 report. WHO Press, Geneva, Switzerland, pp 6.5-1–6.5-62

    Google Scholar 

  • Kautsky H, Kautsky L, Kautsky N, Kautsky U, Lindblad C (1992) Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr Suec 78:33–48

    Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Waern M (1986) Decreased depth penetration of Fucus vesiculosus (L.) since the 1940’s indicates eutrophication of the Baltic Sea. Mar Ecol Prog Ser 28:1–8

    Article  Google Scholar 

  • Khanavi M, Nabavi M, Sadati N, Shams Ardekani M, Sohrabipour J, Nabavi SMB, Ghaeli P, Ostad SN (2010) Cytotoxic activity of some marine brown algae against cancer cell lines. Biol Res 43:31–37

    Article  PubMed  Google Scholar 

  • Kim KN, Ham YM, Moon JY, Kim MJ, Kim DS, Lee WJ, Lee NH, Hyun CG (2009) In vitro cytotoxic activity of Sargassum thunbergii and Dictyopteris divaricata (Jeju seaweeds) on the HL-60 tumour cell line. Int J Pharmacol:1–9

  • Koivikko R (2008) Brown algal phlorotannins—improving and applying chemical methods. Dissertation, University of Turku, Finland

  • Koivikko R, Eränen JK, Loponen J, Jormalainen V (2008) Variation of phlorotannins among three populations of Fucus vesiculosus as revealed by HPLC and colorimetric quantification. J Chem Ecol 34:57–64

    Article  CAS  PubMed  Google Scholar 

  • Koivikko R, Loponen J, Honkanen T, Jormalainen V (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–212

    Article  CAS  PubMed  Google Scholar 

  • Koivikko R, Loponen J, Pihlaja K, Jormalainen V (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 18:326–332

    Article  CAS  PubMed  Google Scholar 

  • Kong CS, Kim JA, Yoon NY, Kim SK (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658

    Article  CAS  PubMed  Google Scholar 

  • Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131:3303–3306

    CAS  PubMed  Google Scholar 

  • Lachnit T, Fischer M, Künzel S, Baines JF, Harder T (2013) Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol 84:411–420

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qian ZJ, Kim MM, Kim SK (2011) Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava. J Food Biochem 35:357–369

    Article  CAS  Google Scholar 

  • Liu H, Gu L (2012) Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. J Agric Food Chem 60:1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Heinrich M, Myers S, Dworjanyn SA (2012) Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional Chinese medicine: a phytochemical and pharmacological review. J Ethnopharmacol 142:591–619

    Article  PubMed  Google Scholar 

  • Lüning K (1985) Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. G. Thieme

  • Maczassek K (2014) Effects of sequential stressors on survival of young life stages of the bladder wrack Fucus vesiculosus L. RADOST - Berichtsreihe. Helmholtz Centre for Ocean Research Kiel GEOMAR, Kiel

  • Maruyama H, Tamauchi H, Hashimoto M, Nakano T (2003) Antitumor activity and immune response of Mekabu fucoidan extracted from sporophyll of Undaria pinnatifida. In Vivo 17:245–249

    CAS  PubMed  Google Scholar 

  • McInnes AG, Ragan MA, Smith DG, Walter JA (1984) High-molecular-weight phloroglucinol-based tannins from brown algae: structural variants. Hydrobiologia 116:597–602

    Article  Google Scholar 

  • Moo-Puc R, Robledo D, Freile-Pelegrín Y (2009) In vitro cytotoxic and antiproliferative activities of marine macroalgae from Yucatán, Mexico. Cienc Mar 35:345–358

    CAS  Google Scholar 

  • Moss BL (1950) Studies in the genus Fucus: II. The anatomical structure and chemical composition of receptacles of Fucus vesiculosus from three contrasting habitats. Ann Bot 14:395–410

    Article  Google Scholar 

  • Murphy C, Hotchkiss S, Worthington J, McKeown SR (2014) The potential of seaweed as a source of drugs for use in cancer chemotherapy. J Appl Phycol 26:2211–2264

    Article  CAS  Google Scholar 

  • Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    Article  CAS  PubMed  Google Scholar 

  • Noda H, Amano H, Arashima K, Nisizawa K (1990) Antitumor activity of marine algae. In: Lindstrom SC, Gabrielson PW (eds) Hydrobiologia. Thirtheenth International Seaweed Symposium, pp 577–584

  • Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43:253–262

    Article  Google Scholar 

  • Parys S, Kehraus S, Krick A, Glombitza KW, Carmeli S, Klimo K, Gerhäuser C, König GM (2010) In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry 71:221–229

    Article  CAS  PubMed  Google Scholar 

  • Pavia H, Brock E (2000) Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 193:285–294

    Article  CAS  Google Scholar 

  • Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophylum nodosum. Mar Ecol Prog Ser 157:139–146

    Article  CAS  Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Article  Google Scholar 

  • Pearson G, Kautsky L, Serrao E (2000) Recent evolution in Baltic Fucus vesiculosus: reduced tolerance to emersion stresses compared to intertidal (North Sea) populations. Mar Ecol Prog Ser 202:67–79

    Article  Google Scholar 

  • Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. I Prog Phycol Res 4:129–241

    CAS  Google Scholar 

  • Rheinheimer G (1996) Meereskunde der Ostsee, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    Article  CAS  PubMed  Google Scholar 

  • Rohde S, Molis M, Wahl M (2004) Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–1018

    Article  Google Scholar 

  • Rohde S, Wahl M (2008) Temporal dynamics of induced resistance in a marine macroalga: time lag of induction and reduction in Fucus vesiculosus. J Exp Mar Bio Ecol 367:227–229

    Article  Google Scholar 

  • Rönnberg O, Ruokolahti C (1986) Seasonal variation of algal epiphytes and phenolic content of Fucus vesiculosus in a northern Baltic archipelago. Ann Bot Fenn 23:317–323

    Google Scholar 

  • Saha M, Rempt M, Gebser B, Grueneberg J, Pohnert G, Weinberger F (2012) Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment. Biofouling 28:593–604

    Article  CAS  PubMed  Google Scholar 

  • Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F (2011) Surface-associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. Biofouling 27:423–433

    Article  CAS  PubMed  Google Scholar 

  • Schagerström E, Forslund H, Kautsky L, Pärnoja M, Kotta J (2014) Does thalli complexity and biomass affect the associated flora and fauna of two co-occurring Fucus species in the Baltic Sea? Estuar Coast Shelf Sci 149:187–193

    Article  Google Scholar 

  • Seufferlein T, Porzner M, Becker T, Budach V, Ceyhan G, Esposito I, Fietkau R et al (2013) S3-Leitlinie zum exokrinen Pankreaskarzinom. Z Gastroenterol 51:1395–1440

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Li J, Guo S, Su H, Fan X (2009) The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo. Chin J Oceanol Limnol 27:277–282

    Article  CAS  Google Scholar 

  • Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 20:705–711

    Article  CAS  Google Scholar 

  • Sieburth JMN, Conover JT (1965) Sargassum tannin, an antibiotic which retards fouling. Nature:52–53

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Stewart BW, Wild CP (2014) World cancer report 2014. International Agency for research on Cancer (IARC), Lyon, France

    Google Scholar 

  • Tanniou A, Vandanjon L, Incera M, Serrano Leon E, Husa V, Le Grand J, Nicolas JL, Poupart N, Kervarec N, Engelen A, Walsh R, Guerard F, Bourgougnon N, Stiger-Pouvreau V (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J Appl Phycol 26:1215–1230

    CAS  Google Scholar 

  • Tatarenkov A, Jönsson RB, Kautsky L, Johannesson K (2007) Genetic structure in populations of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. J Phycol 43:675–685

    Article  CAS  Google Scholar 

  • Teas J (1981) The consumption of seaweed as a protective factor in the etiology of breast cancer. Med Hypotheses 7:601–613

    Article  CAS  PubMed  Google Scholar 

  • Teas J, Harbison ML, Gelman RS (1984) Dietary seaweed (Laminaria) and mammary carcinogenesis in rats. Cancer Res 44:2758–2761

    CAS  PubMed  Google Scholar 

  • Teas J, Vena S, Cone DL, Irhimeh M (2013) The consumption of seaweed as a protective factor in the etiology of breast cancer: proof of principle. J Appl Phycol 25:771–779

    Article  CAS  PubMed  Google Scholar 

  • Tuomi J, Ilvessalo H, Niemelä P, Sirén S, Jormalainen V (1989) Within-plant variation in phenolic content and toughness of the brown alga Fucus vesiculosus L. Bot Mar 32:505–509

    Article  Google Scholar 

  • Vogt H, Schramm W (1991) Conspicuous decline of Fucus in Kiel Bay (Western Baltic): what are the causes? Mar Ecol Prog Ser 69:189–194

    Article  Google Scholar 

  • Wang T, Jónsdóttir R, Liu H, Gu L, Kristinsson HG, Raghavan S, Ólafsdóttir G (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem 60:5874–5883

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A (2013) Folin-Ciocalteau micro method for total phenol in wine. Manual of Waterhouse Lab. Department of Viticulture and Enology, University of California, Davis. http://waterhouse.ucdavis.edu/faqs/folin-ciocalteau-micro-method-for-total-phenol-in-wine Accessed 15 May 2013

  • Weinberg RA (2013) The biology of cancer, 2nd edn. Garland Science, New York, USA

    Google Scholar 

  • Wikström SA, Kautsky L (2007) Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuar Coast Shelf Sci 72:168–176

    Article  Google Scholar 

  • Yamamoto I, Nagumo T, Yagi K, Tominaga H, Aoki M (1974) Antitumor effect of seaweeds. I. Antitumor effect of extracts from Sargassum and Laminaria. Jap J Exp Med 44:543–546

    CAS  PubMed  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhang J, Shen J, Silva A, Dennis AD, Barrow CJ (2006) A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol 18:445–450

    Article  CAS  Google Scholar 

  • Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, Kadir HA (2014) Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci World J:10. doi:10.1155/2014/768323

Download references

Acknowledgements

This study was part of the national research project “Algae Against Cancer (AAC)” (0315812), financially supported by the German “Bundesministerium für Bildung und Forschung” (BMBF) from July 2010 to June 2013. We thank Prof. Dr. Susanne Alban, Dr. Karina Ehrig (University of Kiel, Pharmaceutical Institute), and PD Dr. Michael Kleine (Planton GmbH, Kiel) for the good cooperation. Our thanks also go to Prof. Dr. Axel Zeeck (Georg-August-University Göttingen, Institute for Organic and Biomolecular Chemistry) for the valuable additional information on appropriate separation techniques. Our special thanks go to PD Dr. Christoph Plieth (University of Kiel, Centre for Biochemistry and Molecular Biology (BiMo)) for his valuable scientific advice and for the review of this manuscript. We are also deeply grateful for the access to the core facilities of the BiMo.

Author contributions

L.P., M.Z., H.K., M.P., S.H., and R.K. conceived the design of the AAC-Project. M.Z. and L.P. collected seaweed and produced, processed, and stored seaweed extracts. K.H., M.Z., and L.P. fractionated the crude extracts. M.Z., U.G., M.P., and J.K. performed activity tests and cell culture. M.F., R.G., M.Z., L.P., and K.H. were responsible for structural elucidation. L.P., H.K., M.P., R.K., and K.H. contributed reagents, materials, and analysis tools. M.Z., H.K., and R.G. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Piker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.23 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenthoefer, M., Geisen, U., Hofmann-Peiker, K. et al. Isolation of polyphenols with anticancer activity from the Baltic Sea brown seaweed Fucus vesiculosus using bioassay-guided fractionation. J Appl Phycol 29, 2021–2037 (2017). https://doi.org/10.1007/s10811-017-1080-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1080-z

Keywords

Navigation