Skip to main content

Advertisement

Log in

Photosynthetic marine organisms as a source of anticancer compounds

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Since early human history, plants have served as the most important source of medicinal natural products, and even in the “synthetic age” the majority of lead compounds for pharmaceutical development remain of plant origin. In the marine realm, algae and seagrasses were amongst the first organisms investigated by marine natural products scientists on their quest for novel pharmaceutical compounds. Forty years after the pioneering work in the field of marine drug discovery began, the biodiversity of marine organisms investigated as potential sources of anticancer, anti-inflammatory, and antibiotic compounds has increased tremendously. Nonetheless, marine plants are still an important source of novel secondary metabolites with interesting biomedical properties. The present review focuses on the antitumour properties of compounds isolated from marine algae, phytoplankton, mangroves, seagrasses, or cordgrasses. Compounds produced by marine epi- or endophytic fungi are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APC:

Adenomatosis polyposis coli

Bax:

Bcl2-associated protein X

Bcl-2:

B-cell leukaemia/lymphoma 2

BTK:

Bruton’s tyrosine kinase

CDK:

Cyclin-dependent kinase

Chk:

Checkpoint kinase

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

GSK:

Glycogen synthase kinase

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

IGF-I:

Insulin-like growth factor-I

IGF-IR:

IGF-I receptor

IMPDH:

Inosine 5′-phosphate dehydrogenase

MAPK:

Mitogen-activated protein kinase

MAPKK:

MAPK kinase

MDR:

Multidrug resistance

MMP:

Matrix metalloproteinase

MoA:

Mechanism of action

NA:

Not available

NSCLC:

Non-small cell lung carcinoma

PARP:

Poly ADP ribose polymerase

P-gp:

P-glycoprotein

PI3K:

Phosphoinositide-3-kinase

PKC:

Protein kinase C

PMA:

Phorbol 12-myristate 13-acetate

PTEN:

Phosphatase and tensin homologue

ROS:

Reactive oxygen species

VEGF:

Vascular endothelial growth factor

VEGFR:

VEGF receptor

References

  • Akiyama T, Ueoka R et al (2009) Ceratodictyols, 1-glyceryl ethers from the red alga-sponge association Ceratodictyon spongium/Haliclona cymaeformis. J Nat Prod 72:1552–1554

    Article  CAS  PubMed  Google Scholar 

  • Andrianasolo EH, Goeger D et al (2007) Mitsoamide: a cytotoxic linear lipopeptide from the Madagascar marine cyanobacterium Geitlerinema sp. Pure Appl Chem 79:593–602

    Article  CAS  Google Scholar 

  • Ayyad SEN, Abdel-Halim OB et al (2003) Cytotoxic hydroazulene diterpenes from the brown alga Cystoseira myrica. Z Naturforsch C58:33–38

    Google Scholar 

  • Bhattacharyya J, Stagg DD et al (2006) Constituents of Spartina cynosuroides: Isolation and 13C-NMR analysis of tricin. J Pharm Sci 67:1325–1326

    Article  Google Scholar 

  • Blunt JW, Copp BR et al (2003) Marine natural products. Nat Prod Rep 20:1–48

    Article  CAS  PubMed  Google Scholar 

  • Bugni T, Andjelic CD et al (2009) Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation. Fitoterapia 80:270–273

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Banaigs B et al (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Cardozo KH, Guaratini T et al (2006) Metabolites from algae with economical impact. Comp Biochem Physiol C 29:29

    Google Scholar 

  • Claudio F, Stendardo B (1965) Experimental and clinical contribution on the use of phycolloid in oncology. Minerva Med 56:3617–3622

    CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331

    Article  CAS  Google Scholar 

  • Cragg GM, Grothaus PG et al (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  PubMed  Google Scholar 

  • Dunlap WC, Battershill CN et al (2007) Biomedicinals from the phytosymbionts of marine invertebrates: a molecular approach. Methods 42:358–376

    Article  CAS  PubMed  Google Scholar 

  • Engel S, Jensen PR et al (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    CAS  PubMed  Google Scholar 

  • Fenical W, Paul VJ (1984) Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. Hydrobiologia 116–117:135–140

    Article  Google Scholar 

  • Fisch KM, Böhm V et al (2003) Antioxidant meroterpenoids from the brown alga Cystoseira crinita. J Nat Prod 66:968–975

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1996) Fighting cancer by attacking its blood supply. Sci Am 275:150–154

    Article  CAS  PubMed  Google Scholar 

  • Folmer F, Jaspars M et al (2008) Marine natural products as targeted modulators of the transcription factor NF-kappaB. Biochem Pharmacol 75:603–617

    Article  CAS  PubMed  Google Scholar 

  • Folmer F, Jaspars M et al (2009) The inhibition of TNF-alpha-induced NF-kappaB activation by marine natural products. Biochem Pharmacol 78:592–606

    Article  CAS  PubMed  Google Scholar 

  • Frenz JL, Kohl AC et al (2004) Marine natural products as therapeutic agents: part 2. Expert Opin Ther Pat 14:17–33

    Article  CAS  Google Scholar 

  • Fujihara M, Iizima N et al (1984) Purification and chemical and physical characterization of an antitumor polysaccharide from the brown seaweed Sargassum fulvellum. Carbohydr Res 125:97–106

    Article  CAS  Google Scholar 

  • Fusetani N (2009) Marine toxins: an overview. Prog Mol Subcell Biol 46:1–44

    Article  CAS  PubMed  Google Scholar 

  • Gamal-Eldeen AM, Ahmed EF et al (2009) In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food Chem Toxicol 47:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  CAS  PubMed  Google Scholar 

  • Han LJ, Huang X et al (2007) Unusual naphtoquinone derivatives from the twigs of Avicennia marina. J Nat Prod 70:923–927

    Article  CAS  PubMed  Google Scholar 

  • Heo SL, Ko SC et al (2009) Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol In Vitro 23:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Hirschfield DR, Fenical W et al (1973) Marine natural products 8. Pachydictyol A, an exceptional diterpene alcohol from the brown algae, Pachydictyon coriaceum. J Am Chem Soc 95:4049–4050

    Article  Google Scholar 

  • Hong K, Gao AH et al (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44

    Article  CAS  PubMed  Google Scholar 

  • Isaka M, Suyarnsestakorn C et al (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Jaspars M (1998) Pharmacy of the deep—marine organisms as sources of anticancer agents. In: Harvey A (ed) Advances in drug discovery techniques. John Wiley and Sons Ltd., London, pp 65–84

    Google Scholar 

  • Jaspars M, Lawton L (1998) Cyanobacteria—a novel source of pharmaceuticals. Curr Opin Drug Discov Devel 1:77–84

    CAS  PubMed  Google Scholar 

  • Jiang RW, Hay ME et al (2008) Antineoplastic unsaturated fatty acids from Fijian macroalgae. Phytochemistry 69:2495–2500

    Article  CAS  PubMed  Google Scholar 

  • Jones WP, Lobo-Echeverri T et al (2005) Antitumour activity of 3-chlorodeoxylapachol, a naphthoquinone from Avicennia germinans collected from an experimental plot in southern Florida. J Pharm Pharmacol 57:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Baker OBE (1984) Seaweeds in pharmaceutical studies and applications. Hydrobiologia 116–117:29–40

    Google Scholar 

  • Jung WK, Heo SL et al (2009) Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agric Food Chem 57:4439–4446

    Article  CAS  Google Scholar 

  • Kasai Y, Komatsu K et al (2005) Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J Nat Prod 68:777–779

    Article  CAS  PubMed  Google Scholar 

  • Kerr R, Kerr S (1999) Marine natural products as therapeutic agents. Expert Opin Ther Pat 9:1207–1222

    Article  CAS  Google Scholar 

  • Kim JH, Cho YH et al (2004) Antioxidants and inhibitor of matrix metalloproteinase-1 expression from leaves of Zostera marina L. Arch Pharm Res 27:177–183

    Article  CAS  PubMed  Google Scholar 

  • Kingston DG, Newman DJ (2005) The search for novel drug leads for predominantely antitumor therapies by utilizing mother nature’s pharmacophoric libraries. Curr Opin Drug Discov Devel 8:207–227

    CAS  PubMed  Google Scholar 

  • Kobayashi J, Tsuda M (2004) Bioactive products from Okinawan marine micro- and macroorganisms. Phytochem Rev 3:267–274

    Article  CAS  Google Scholar 

  • Koeffler HP, Golde DW (1980) Human myeloid leukemia cell lines: a review. Blood 56:344–350

    CAS  PubMed  Google Scholar 

  • Kong CS, Kim JA et al (2009a) Protective effect of isorhamnetin 3-O-β-D-glucopyranoside from Salicornia herbacea against oxidation-induced cell damage. Food Chem Toxicol 47:1914–1920

    Article  CAS  PubMed  Google Scholar 

  • Kong CS, Kim JA et al (2009b) Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658

    Article  CAS  PubMed  Google Scholar 

  • König GM, Wright AD (1996) Marine natural products research: current directions and future potential. Planta Med 62:193–211

    Article  PubMed  Google Scholar 

  • König GM, Kehraus S et al (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238

    Article  PubMed  Google Scholar 

  • Kwon MJ, Nam TJ (2007) A polysaccharide of the marine alga Capsosiphon fulvescens induces apoptosis in AGS gastric cancer cells via an IGF-IR-mediated PI3 K/Akt pathway. Cell Biol Int 31:768–775

    Article  CAS  PubMed  Google Scholar 

  • Lane AL, Stout EP et al (2007) Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. J Org Chem 72:7343–7351

    Article  CAS  PubMed  Google Scholar 

  • Laphookhieoa S, Cheenprachaa S et al (2004) Cytotoxic cardenolide glycoside from the seeds of Cerbera odollam. Phytochemistry 65:507–510

    Article  Google Scholar 

  • Lee SJ, Bai SK et al (2003) Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I kappa B kinase-dependent NF-kappa B activation. Mol Cells 16:97–105

    CAS  PubMed  Google Scholar 

  • Liu BH, Lee YK (1999) Composition and biosynthetic pathways of carotenoids in the astaxanthin-producing green alga Chlorococcum sp. Biotechnol Lett 21:1007–1010

    Article  CAS  Google Scholar 

  • Lozzio BB, Lozzio CB (1979) Properties and usefulness of the original K-562 human myelogenous leukemia cell line. Leuk Res 3:363–370

    Article  CAS  PubMed  Google Scholar 

  • Martins CA, Alvito P et al (2003) Reevaluation of production of paralytic shellfish toxin by bacteria associated with dinoflagellates of the Portuguese coast. Appl Environ Microbiol 69:5693–5698

    Article  CAS  PubMed  Google Scholar 

  • McChesney JD, Venkataraman SK et al (2007) Plant natural products: back to the future or into extinction? Phytochemistry 68:2015–2022

    Article  CAS  PubMed  Google Scholar 

  • Mijatovic T, Mathieu V et al (2006) Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia 8:402–412

    Article  CAS  PubMed  Google Scholar 

  • Miles DH, Randle S et al (1981) Structure of juncunone: a biogenetically intriguing molecule from the marsh plant Juncus roemerianus. J Org Chem 46:2813–2815

    Article  CAS  Google Scholar 

  • Millot M, Tomasi S et al (2009) Cytotoxic constituents of the lichen Diploicia canescens. J Nat Prod 72:2177–2180

    Article  CAS  PubMed  Google Scholar 

  • Molinski T, Dalisay DS et al (2009) Drug development from natural products. Nat Rev Drug Discov 8:69–85

    Article  CAS  PubMed  Google Scholar 

  • Montero A, Beierle JM et al (2009) Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic α/β. J Am Chem Soc 131:3033–3041

    Article  CAS  PubMed  Google Scholar 

  • Nagle DG, Zhou YD et al (2004) Mechanism targeted discovery of antitumor marine natural products. Curr Med Chem 11:1725–1756

    CAS  PubMed  Google Scholar 

  • Numata A, Kanbara S et al (1992) A cytotoxic principle of the brown alga Sargassum tortile and structures of chromenes. Phytochem Rev 31:1209–1213

    Article  CAS  Google Scholar 

  • O’Brien ET, White S et al (1984) Pharmacological properties of a marine natural product, stypoldione, obtained from the brown alga Stypopodium zonale. Hydrobiologia 116–117:141–145

    Article  Google Scholar 

  • Palozza P, Torelli C et al (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117

    Article  CAS  PubMed  Google Scholar 

  • Pettit GR, Hogan F et al (2008) Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms (1a). J Nat Prod 71:438–444

    Article  CAS  PubMed  Google Scholar 

  • Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362

    Article  CAS  PubMed  Google Scholar 

  • Prestegard SK, Oftedal L et al (2009) Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity. Mar Drugs 7:605–623

    Article  CAS  PubMed  Google Scholar 

  • Rashid MA, Gustafson KR et al (1995) Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian Lissoclinum patella. J Nat Prod 58:594–597

    Article  CAS  PubMed  Google Scholar 

  • Rennie J, Rusting R (1996) Making headway against cancer. Sci Am 275:56

    Article  CAS  PubMed  Google Scholar 

  • Rowland SJ, Belt ST et al (2001) Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia. Phytochemistry 56:597–602

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (1996) How cancer spreads. Sci Am 275:72–77

    Article  CAS  PubMed  Google Scholar 

  • Ryu BM, Li Y et al (2009) Differentiation of human osteocarcinoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: Implication for chronic articular disease. Chemico-Biological Interactions 179:192–201

    Article  CAS  PubMed  Google Scholar 

  • Scheuer PJ (1973) Chemistry of marine natural products. Academic Press, New York

    Google Scholar 

  • Schmidt E, Nelson J et al (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320

    Article  CAS  PubMed  Google Scholar 

  • Sewell JM, Mayer I et al (2005) The mechanism of action of Kahalalide F: variable cell permeability in human hepatoma cell lines. Eur J Cancer 41:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y (2003) Microalgal metabolites. Curr Opin Microbiol 6:236–243

    Article  CAS  PubMed  Google Scholar 

  • Smyrniotopoulos V, Vagias C et al (2010) Structure and in vitro antitumor activity evaluation of brominated diterpenes from the red alga Sphaerococcus coronopifolius. Bioorg Med Chem 18:1321–1330

    Article  CAS  PubMed  Google Scholar 

  • Sogawa K, Matsuda M et al (1998) Induction of apoptosis by a marine microalgal polysaccharide in a human leukemic cell line. J Mar Biotechnol 6:241–243

    PubMed  Google Scholar 

  • Suarez Y, Gonzalez L et al (2003) Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther 2:863–872

    CAS  PubMed  Google Scholar 

  • Sun J, Shi DY et al (2007) Chemical constituents of the red alga Laurencia tristicha. J Asian Nat Prod Res 9:725–734

    Article  CAS  PubMed  Google Scholar 

  • Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979

    Article  CAS  PubMed  Google Scholar 

  • Toledo Marante FJ, García Castellano A et al (2003) Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity. J Chem Ecol 29:2049–2071

    Article  CAS  PubMed  Google Scholar 

  • Umemura K, Yanase K et al (2003) Inhibition of DNA topoisomerases I and II, and growth inhibition of human cancer cell lines by a marine microalgal polysaccharide. Biochem Pharmacol 66:481–487

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (1996) How cancer arises. Sci Am 275:62–70

    Article  CAS  PubMed  Google Scholar 

  • Williams PG (2008) Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol 27:45–50

    Article  PubMed  Google Scholar 

  • Williams AB, Jacobs RS (1993) A marine natural product, patellamide D, reverses multidrug resistance in a human leukemic cell line. Cancer Lett 71:97–102

    Article  CAS  PubMed  Google Scholar 

  • Williams PG, Yoshida WY et al (2004) Micromide and guamamide: cytotoxic alkaloids from a species of the marine cyanobacterium Symploca. J Nat Prod 67:49–53

    Article  CAS  PubMed  Google Scholar 

  • Williams DE, Sturgeon CM et al (2007) Nigricanosides A and B, antimitotic glycolipids isolated from the green alga Avrainvillea nigricans collected in Dominica. J Am Chem Soc 129:5822–5823

    Article  CAS  PubMed  Google Scholar 

  • Wu XZ, Chen D (2006) Effects of sulfated polysaccarides on tumour biology. West Indian Med J 55:270–273

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kjer J et al (2009) Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. J Nat Prod 72:662–665

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Fan CQ et al (2006) Xylogranatins A–D: novel tetranortriterpenoids with an unusual 9, 10-seco scaffold from marine mangrove Xylocarpus granatum. Org Lett 8:4935–4938

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Wang XN et al (2007) Limonoids from the seeds of the marine mangrove Xylocarpus granatum. J Nat Prod 70:682–685

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Tseng CK et al (1984) Chinese seaweeds in herbal medicine. Hydrobiologia 116–117:152–154

    Google Scholar 

  • Zubia M, Fabre MS et al (2009a) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Botanica Marina 52:268–277

    Article  CAS  Google Scholar 

  • Zubia M, Fabre MS et al (2009b) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116:693–701

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MJ is the recipient of a BBSRC Research Development Fellowship. M. Diederich’s research at the Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC) is financially supported by “Recherche Cancer et Sang” foundation, by «Recherches Scientifiques Luxembourg» asbl, by «Een Häerz fir Kriibskrank Kanner» association, the Action Lions “Vaincre le Cancer” Luxembourg, The Fonds National de la Recherche Luxembourg, Televie Luxembourg and the Foundation for Scientific Cooperation between Germany and Luxemburg for additional support. Further support was received from the European Union (ITN “RedCat” 215009 and Interreg IVa project “Corena”). Print costs were covered by the Fonds National de la Recherche – Luxembourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diederich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folmer, F., Jaspars, M., Dicato, M. et al. Photosynthetic marine organisms as a source of anticancer compounds. Phytochem Rev 9, 557–579 (2010). https://doi.org/10.1007/s11101-010-9200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9200-2

Keywords

Navigation