Skip to main content
Log in

The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2′,3,3′-tetrabromo-4,4′,5,5′-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2′,3-tribromo-3′,4,4′,5-tetrahydroxy-6′-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 μg/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arber, D. A., R. Tamayo and L. M. Weiss, 1998. Paraffin section detection of the c-kit gene production (CD117) in human tissues: value in the diagnosis of mast cell disorders. Hum. Pathol. 28: 498–504.

    Article  Google Scholar 

  • Bliss, C., 1935. The calculation of the dose-mortality curve. Ann. Appl. Biol. 22: 134–167.

    Article  Google Scholar 

  • Bokemeyer, C., M. A. Kuczyk, T. Dunn et al., 1996. Expression of stem-cell factor and its receptor c-kit protein in normal testicular tissue and malignant germ-cell tumors. J. Cancer Res. Clin. Oncol. 122: 301–306.

    Article  Google Scholar 

  • Carmichael, J., W. G. DeGraff, A. F. Gazdar et al., 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47(4): 936–942.

    Google Scholar 

  • Christiansen, D. H., M. K. Andersen, F. Desta et al., 2005. Mutations of genes in the receptor tyrosine kinase (RTK)/RASBRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 19(12): 2 232–2 240.

    Article  Google Scholar 

  • d’Auriol L., M. G. Mattei, C. Andre et al., 1988. Localization of the human c-kit protooncogene on the q11–q12 region of chromosome 4. Hum. Genet. 78: 374–376.

    Article  Google Scholar 

  • de Silva, C. M. and R. Reid, 2003. Gastrointestinal stromal tumors (GIST): c-kit mutations, CD117 expression, differential diagnosis and targeted cancer therapy with Imatinib. Pathol. Oncol. Res. 9(1): 13–19.

    Article  Google Scholar 

  • DeMatteo, R. P., 2002. The GIST of targeted cancer therapy: a tumor (gastrointestinal stromal tumor), a mutated gene (c-kit), and a molecular inhibitor (STI571). Ann. Surg. Oncol. 9(9): 831–839.

    Article  Google Scholar 

  • Demetri, G. D. 2001. Targeting c-kit mutations in solid tumors: scientific rationale and novel therapeutic options. Semin. Oncol. 28(5): 19–26.

    Article  Google Scholar 

  • Fan, X., N. J. Xu and J. G. Shi, 2003a. Bromophenols from the red agla Rhodomela confervoides. J. Nat. Prod. 66: 455–458.

    Article  Google Scholar 

  • Fan, X., N. J. Xu and J. G. Shi, 2003b. Two new bromophenols from red alga Rhodomela confervoids. Chin. Chem. Lett. 14(9): 939–941.

    Google Scholar 

  • Fan, X., N. J. Xu and J. G. Shi, 2003c. A new brominated phenylpropylaldehyde and its dimethyl acetal from red alga rhodomela confervoides. Chin. Chem. Lett. 14(10): 1 045–1 047.

    Google Scholar 

  • Hirota, S., T. Nishida, K. Isozaki et al., 2002. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of Kit gene. Gastroenterology. 122(5):1 493–1 499.

    Article  Google Scholar 

  • Huang, Z. G. 1994. Marine Species and Their Distributions in China’s Seas. China Ocean Press, Beijing, China. p. 217. (in Chinese)

    Google Scholar 

  • Ikeda, H., Y. Kanakura, T. Tamaki, et al., 1991. Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 78(11): 2 962–2 968.

    Google Scholar 

  • Longley, J. B., D. D. Metcalfe, M. Tharp, et al., 1999. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc. Natl. Acad. Sci. USA. 96(4): 1 609–1 614.

    Article  Google Scholar 

  • Majumder, S., K. Brown, F. H. Qiu et al., 1988. C-kit protein, a transmembrane identification in tissues and characterization. Mol. Cell Biol. 8: 4 896–4 903.

    Google Scholar 

  • McCulloch, E. A. and M. D. Minden, 1993. The cell surface receptor encoded by the proto-oncogene KIT and its ligand. Cancer Treat Res. 64: 45–77.

    Google Scholar 

  • Miettinen, M. and J. Lasota, 2005. KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol. 13(3): 205–220.

    Article  Google Scholar 

  • Mosumann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1): 55–63.

    Article  Google Scholar 

  • Pietsch, T., M. R. Nicotra, R. Fraioli et al., 1998. Expression of the c- Kit receptor and its ligand SCF in non-small-cell lung carcinomas. Int. J. Cancer. 75(2): 171–175.

    Article  Google Scholar 

  • Sarlomo-Rikala, M., A. J. Kovatich, A. Barusevicius et al., 1998. CD117: a sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod. Pathol. 11(8): 728–734.

    Google Scholar 

  • Schmandt, R. E., R. Broaddus, K. H. Lu et al., 2003. Expression of c- ABL, c-KIT, and platelet-derived growth factor receptorbeta in ovarian serous carcinoma and normal ovarian surface epithelium. Cancer 98(4): 758–764.

    Article  Google Scholar 

  • Tajima, F., T. Kawatani, K. Ishiga et al., 1998. Serum soluble c-kit receptor and expression of c-kit protein and mRNA in acute myeloid leukemia. Eur. J. Haematol. 60: 289–296.

    Article  Google Scholar 

  • Vitali, R., V. Cesi, M. R. Nicotra et al., 2003. C-Kit is preferentially expressed in MYCN-amplified neuroblastoma and its effect on cell proliferation is inhibited in vitro by STI-571. Int. J. Cancer 106(2): 147–152.

    Article  Google Scholar 

  • Vliagoftis, H., A. S. Worobec and D. D. Metcalfe, 1997. The protooncogene c-kit and c-kit ligand in human disease. J. Allergy. Clin. Immunol. 100(4): 435–440.

    Article  Google Scholar 

  • Xu, N. J., X. Fan, X. J. Yan et al., 2003. Antibacterial bromophenols from the marine red alga Rhodomela confervoids. Phytochemistry 62: 1 221–1 224.

    Article  Google Scholar 

  • Xu, X. L., F. H. Song, S. J. Wang et al., 2004a. Dibenzyl Bromophenols with Diverse Dimerization Patterns from the Brown Alga Leathesia nana. J. Nat. Prod. 67(10): 1 661–1 666.

    Article  Google Scholar 

  • Xu, X. L., X. Fan, F. H. Song et al., 2004b. A new bromophenol from the brown alga Leathesia nana. Chin. Chem. Lett. 15(6): 661–663.

    Google Scholar 

  • Zhao, J. L, X. Fan, S. J. Wang et al., 2004. Bromophenol derivatives from the red alga Rhodomela confervoids J. Nat. Prod. 67: 1 032–1 035.

    Google Scholar 

  • Zhao, J. L, M. Ma, S. J. Wang et al.,2005. Bromophenols coupled with derivatives of amino acids and nucleosides from the red alga Rhodomela confervoids J. Nat. Prod. 68: 691–694.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Shi  (史大永).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program, No. 2007AA09Z410) and Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-209)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, D., Li, J., Guo, S. et al. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo . Chin. J. Ocean. Limnol. 27, 277–282 (2009). https://doi.org/10.1007/s00343-009-9119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9119-x

Keyword

Navigation