Skip to main content
Log in

The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of Scenedesmus acutus in outdoor raceway ponds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Lipid accumulation is critical in the production of biodiesel from microalgae. However, little work has been done on the assessment of lipid accumulation during nitrogen stress in large research-scale outdoor raceways during different seasons; most values for lipid accumulation are assumptions based on work completed in laboratory settings or outdoor photobioreactors. This study focused on the use of raceway ponds operated in batch cultivation mode with an area of 30.37 m2 to determine the impacts of nitrate-nitrogen concentration and cultivation depth on the ability of Scenedesmus acutus strain LB 0414 to accumulate lipids. A concentration of less than 60 mg N-NO3  L−1 was required for removal of nitrogen in the cultivation medium within 8 days to stimulate lipid accumulation and increase lipid productivity. When nitrate concentrations were increased to prevent nitrogen depletion, lipid productivity decreased, which demonstrates that stressing is needed to induce lipid accumulation for increased lipid productivity. Additionally, decreasing cultivation depth below 9 cm, compared to raceways operated at a depth of 20–24 cm, increased lipid productivity by 62 % in December 2014 and 38 % in February 2015. More desirable environmental conditions, mainly increased sunlight and temperature, in February, increased biodiesel productivity for all raceways and account for the decrease in productivity differences. This research highlights increased lipid productivity found by reducing cultivation depth and nitrogen concentrations in outdoor raceways and provides insight into the optimal conditions for large-scale biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Béchet Q, Shilton A, Park JBK, Craggs RJ, Guieysse B (2011) Universal temperature model for shallow algal ponds provides improved accuracy. Environ Sci Technol 45:3702–3709

    Article  PubMed  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111

    Article  Google Scholar 

  • Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, Chavis A, Kyndt J, Kacira M, Ogden KL, Huesemann M (2012) A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int J Chem Eng 2012:9

    Article  Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2014) High density outdoor microalgal culture. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Netherlands, pp 147–173

    Chapter  Google Scholar 

  • Eustance E (2015) Assessing outdoor algal cultivation in panel and raceway photobioreactors for biomass and lipid productivity. Dissertation, Arizona State University

  • Eustance E, Gardner RD, Moll KM, Menicucci J, Gerlach R, Peyton BM (2013) Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea. J Appl Phycol 25:1663–1677

    Article  CAS  Google Scholar 

  • Eustance E, Wray JT, Badvipour S, Sommerfeld MR (2015a) The effects of limiting nighttime aeration on productivity and lipid accumulation in Scenedesmus dimorphous. Algal Res 10:33–40

    Article  Google Scholar 

  • Eustance E, Badvipour S, Wray JT, Sommerfeld MR (2015b) Biomass productivity of two Scenedesmus strains cultivated semi-continuously in 3 outdoor raceway ponds and flat-panel photobioreactors. J Appl Phycol 25:1663–1677

    Article  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey K (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 23:1005–1016

    Article  CAS  Google Scholar 

  • Gardner R, Cooksey K, Mus F, Macur R, Moll K, Eustance E, Carlson R, Gerlach R, Fields M, Peyton B (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320

    Article  CAS  Google Scholar 

  • Gardner RD, Lohman E, Gerlach R, Cooksey KE, Peyton BM (2013) Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 110:87–96

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2013) Mass production of microalgae at optimal photosynthetic rates. In: Dubinsky Z (ed) Photosynthesis. InTech, pp 357–371. doi:10.5772/55193

  • Grobbelaar JU, Nedbal L, Tichy L, Setlik L (1995) Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors. J Appl Phycol 7:175–184

    Article  CAS  Google Scholar 

  • Guterman H, Vonshak A, Ben-Yaakov S (1990) A macromodel for outdoor algal mass production. Biotechnol Bioeng 35:809–819

    Article  CAS  PubMed  Google Scholar 

  • Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass-culture of microalgae - areal density as an important factor for achieving maximal productivity. Biomass 15:211–221

    Article  Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Article  CAS  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourenco SO, Barbarino E, Mancini-Filho J, Schinke KP, Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168

    Article  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    Article  CAS  PubMed  Google Scholar 

  • Moll KM, Gardner RD, Eustance EO, Gerlach R, Peyton BM (2014) Combining multiple nutrient stresses and bicarbonate addition to promote lipid accumulation in the diatom RGd-1. Algal Res 5:7–15

    Article  Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561

    Article  PubMed  Google Scholar 

  • Ras M, Steyer J-P, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12(2):153–164

    Article  CAS  Google Scholar 

  • Richmond A, Cheng-Wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol 85:259–269

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Shurin JB, Abbott RL, Deal MS, Kwan GT, Litchman E, McBride RC, Mandal S, Smith VH (2013) Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol Lett 16:1393–1404

    Article  PubMed  Google Scholar 

  • Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Van Wychen S, Laurens LML. NREL (2013) Determination of total carbohydrates in algal biomass. Report Number: NREL/TP-5100-60957

  • Van Wychen S, Laurens LML. NREL (2013) Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Report Number: NREL/TP-5100-60958

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118

    Article  Google Scholar 

  • Waller P, Ryan R, Kacira M, Li P (2012) The algae raceway integrated design for optimal temperature management. Biomass Bioenergy 46:702–709

    Article  Google Scholar 

  • Yamaberi K, Takagi M, Yoshida T (1998) Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. J Mar Biotechnol 6:44–48

    CAS  Google Scholar 

  • Zemke P, Sommerfeld M, Hu Q (2013) Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Appl Microbiol Biotechnol 97:5645–5655

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Laboratory for Algae Research and Biotechnology and the Arizona Center for Algae Technology and Innovation staff for their intellectual, technical, and equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everett Eustance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eustance, E., Wray, J.T., Badvipour, S. et al. The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of Scenedesmus acutus in outdoor raceway ponds. J Appl Phycol 28, 1459–1469 (2016). https://doi.org/10.1007/s10811-015-0709-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0709-z

Keywords

Navigation