Skip to main content
Log in

Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Algal-derived biodiesel is of particular interest because of several factors including: the potential for a near-carbon-neutral life cycle, the prospective ability for algae to capture carbon dioxide generated from coal, and algae’s high per acre yield potential. Our group and others have shown that in nitrogen limitation, and for a single species of Chlorella, a rise in culture medium pH yields triacylglycerol (TAG) accumulation. To solidify and expand on these triggers, the influence and interaction of pH and nitrogen concentration on lipid production was further investigated on Chlorophyceae Scenedesmus sp. and Coelastrella sp. Growth was monitored optically and TAG accumulation was monitored by Nile red fluorescence and confirmed by gas chromatography. Both organisms grew in all treatments and TAG accumulation was observed by two distinct conditions: high pH and nitrogen limitation. The Scenedesmus sp. was shown to grow and produce lipids to a larger degree in alkaliphilic conditions (pH >9) and was used to further investigate the interplay between TAG accumulation from high pH and/or nitrate depletion. Results given here indicate that TAG accumulation per cell, monitored by Nile red fluorescence, correlates with pH at the time of nitrate depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Banerjee A, Sharma R, Chisti Y (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245

    Article  CAS  PubMed  Google Scholar 

  • Benemann J, Oswald W (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report (other information: PBD: 21 Mar 1996). pp. 214

  • Bilgen S, Kaygusuz K, Sari A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26(12):1119–1129

    Article  Google Scholar 

  • Bligh E, Dyer W (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Brown L (2006) Plan b: Rescuing a planet under stress and a civilization in trouble. W.W. Norton Publishing, London

    Google Scholar 

  • Cepák V, Přibyl P, Vítová M (2006) The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus. Folia Microbiol 51(4):342–348

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Meth 6(6):333–345

    Article  CAS  Google Scholar 

  • Cunningham J (2007) Biofuel joins the jet set. Prof Eng 20(10):32–32

    Google Scholar 

  • Dukes J (2003) Burning buried sunshine: human consumption of ancient solar energy. Climate Change 61(1):31–44

    Article  CAS  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney M (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Meth 68(3):639–642

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira A (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    Article  CAS  PubMed  Google Scholar 

  • Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J Roy Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322

    Article  CAS  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Guckert J, Cooksey K (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell inhibition. J Phycol 26(1):72–79

    Article  CAS  Google Scholar 

  • Guckert J, Cooksey K, Jackson L (1988) Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Meth 8(3):139–149

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  PubMed  Google Scholar 

  • Khlebovich V, Degtyarev A (2005) Mechanism of defensive morph formation in Scenedesmus acutus (Chlorophycea, Scenedesmaceae). Dokl Biol Sci 403(1–6):303–305

    Article  CAS  PubMed  Google Scholar 

  • Lardon L, HeÌlias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12(7):553–556

    Article  CAS  Google Scholar 

  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 10(1, Supplement 1):S75–S77

    Article  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636

    Article  CAS  PubMed  Google Scholar 

  • Makulla A (2000) Fatty acid composition of Scenedesmus obliquus: correlation to dilution rates. Limnologica 30(2):162–168

    Article  CAS  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Nichols H, Bold H (1965) Trichosarcina polymorpha gen. et sp. nov. J Phycol 1(1):34–38

    Article  Google Scholar 

  • Pickett-Heaps J, Staehelin L (1975) The ultrastructure of Scenedesmus (Chlorophyceae). II. Cell division and colony formation. J Phycol 11:186–202

    Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43

    Article  Google Scholar 

  • SERI (1986) Microalgae culture collection 1985–1986 (M. T. R. Group, Trans.). Solar Energy Research Institute, Golden, p 100

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the United States Department of Energy’s aquatic species program—biodiesel from algae. National Renewable Energy Laboratory, Golden, p 328

    Book  Google Scholar 

  • Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2(1):51–57

    CAS  Google Scholar 

  • Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160(6):1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate, and light-dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Stephenson A, Dennis J, Howe C, Scott S, Smith A (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Stumm W, Morgan J (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Thielmann J, Tolbert NE, Goyal A, Senger H (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92:622–629

    Article  CAS  PubMed  Google Scholar 

  • Trainor F, Cain J, Shubert L (1976) Morphology and nutrition of the colonial green alga Scenedesmus: 80 years later. Bot Rev 42(1):5–25

    Article  Google Scholar 

  • Wiltshire K, Boersma M, Möller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34(2):119–126

    Article  CAS  Google Scholar 

  • Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15(5):379–389

    Article  CAS  Google Scholar 

Download references

Financial disclosure/Acknowledgments

The authors would like to thank Dr. Brett Barney and the Seefeldt lab group (Utah State University) for assistance with the gas chromatographic analyses and for technical support from the Montana State University Algal Biofuels Group, especially, Dr. Matthew Fields and Grant Justin for molecular fingerprinting work done on CHLOR-1 and PC-3. Also of special note is the 18S rRNA gene sequence interrogations done by Seth D’Imperio and Rich Macur, along with instrumental support from the Montana State University Center for Biofilm Engineering. Funding was provided by the Air Force Office of Scientific Research (AFOSR grant FA9550-09-1-0243), US Department of Energy (Office of Biomass Production grant DE-FG36-08GO18161), and support for RG was provided by NSF IGERT Program in Geobiological Systems (DGE 0654336) at Montana State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Cooksey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, R., Peters, P., Peyton, B. et al. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23, 1005–1016 (2011). https://doi.org/10.1007/s10811-010-9633-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9633-4

Keywords

Navigation