Skip to main content
Log in

A promising electrochemical sensor based on Au nanoparticles decorated reduced graphene oxide for selective detection of herbicide diuron in natural waters

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, an electrochemical sensor for the detection of herbicide diuron in natural water using a reduced graphene oxide–gold nanoparticle (rGO–AuNP)-modified screen-printed electrode (SPE) was developed. The proposed sensor was fabricated by the simple electrochemical co-reduction of graphene oxide and chloroauric acid using a cyclic voltammetry (CV) technique and applied to the direct electrochemical detection of diuron residue in water without using any mediator. A field emission scanning electron microscope image showed that the AuNPs were firmly attached and well distributed on the surface of the rGO nanosheets. The presence of rGO nanosheets was further proven by the Raman spectrum, which reveals that the D/G intensity ratio for rGO was smaller than that for GO. Moreover, the CV and linear sweep voltammetry results showed the effective accumulation of diuron on the rGO–AuNP/SPE surface and produced an irreversible reduction peak at around −0.5 V in a pH 5.5 phosphate buffer. Hence, it greatly enhanced the electrochemical reduction of diuron. Under optimized conditions, the cathodic peak current was proportional to the diuron concentration over a wide range of 0.5–30.0 µg mL−1, with a detection limit of 0.125 µg mL−1 (S/N = 3). The proposed diuron electrochemical sensor also exhibited a relative standard deviation of 4.25 % for a six replicate analysis of 10.0 µg mL−1 diuron, and the response of the electrode declined by 20 % after 30 days at ambient temperature. In addition, the sensor was successfully employed for the determination of diuron in a variety of water samples such as lake and seawater sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933

    Article  CAS  Google Scholar 

  2. Watanabe T, Yuyama I, Yasumura S (2006) Toxicological effects of biocides on symbiotic and aposymbiotic juveniles of the hermatypic coral Acropora tenuis. J Exp Mar Biol Ecol 339(2):177–188

    Article  CAS  Google Scholar 

  3. Stork PR, Bennett FR, Bell MJ (2008) The environmental fate of diuron under a conventional production regime in a sugarcane farm during the plant cane phase. Pest Manag Sci 64(9):954–963

    Article  CAS  Google Scholar 

  4. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56(11):1021–1032

    Article  CAS  Google Scholar 

  5. Che D, Meacher RB, Rugh CL, Kim T, Heaton AC, Merkle SA (2006) Expression of organomercurial lyase in eastern cottonwood enhances organomercury resistance. Vitro Cell Dev Biol Plant 42(3):228–234

    Article  CAS  Google Scholar 

  6. Hance R (1973) The effect of nutrients on the decomposition of the herbicides atrazine and linuron incubated with soil. Pest Sci 4(6):817–822

    Article  CAS  Google Scholar 

  7. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50(2):125–146

    Article  CAS  Google Scholar 

  8. Katsumata H, Sada M, Nakaoka Y, Kaneco S, Suzuki T, Ohta K (2009) Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J Hazard Mater 171(1):1081–1087

    Article  CAS  Google Scholar 

  9. Ong AS, Goh S (2002) Palm oil: a healthful and cost-effective dietary component. Food Nutri Bull 23(1):11–22

    Article  CAS  Google Scholar 

  10. Sapozhnikova Y, Wirth E, Schiff K, Brown J, Fulton M (2007) Antifouling pesticides in the coastal waters of Southern California. Mar Pollut Bull 54(12):1972–1978

    Article  CAS  Google Scholar 

  11. Feng J, Zheng Z, Luan J, Li K, Wang L, Feng J (2009) Gas–liquid hybrid discharge-induced degradation of diuron in aqueous solution. J Hazard Mater 164(2):838–846

    Article  CAS  Google Scholar 

  12. Jones RJ, Kerswell AP (2003) Phytotoxicity of Photosystem II(PSII) herbicides to coral. Mar Ecol Prog Ser 261:149–159

    Article  CAS  Google Scholar 

  13. Jones R (2005) The ecotoxicological effects of Photosystem II herbicides on corals. Mar Pollut Bull 51(5):495–506

    Article  CAS  Google Scholar 

  14. Van Boven M, Laruelle L, Daenens P (1990) HPLC analysis of diuron and metabolites in blood and urine. J Anal Toxicol 14(4):231–234

    Article  CAS  Google Scholar 

  15. Stan HJ (2000) Pesticide residue analysis in foodstuffs applying capillary gas chromatography with mass spectrometric detection: state-of-the-art use of modified DFG-multimethod S19 and automated data evaluation. J Chrom A 892(1):347–377

    Article  CAS  Google Scholar 

  16. Draper WM (2001) Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water. J Agric Food Chem 49(6):2746–2755

    Article  CAS  Google Scholar 

  17. Vessella J, Acobas F, Benanou D, Guinamant J (2001) Liquid chromatography coupled with time-of-flight mass spectrometery. The new way for environmental analysis. Spectr Anal 220:32–36

    Google Scholar 

  18. Rodríguez R, Picó Y, Font G, Mañes J (2001) Determination of urea-derived pesticides in fruits and vegetables by solid-phase preconcentration and capillary electrophoresis. Electrophoresis 22(10):2010–2016

    Article  Google Scholar 

  19. Zhang M, Rassi ZE (2001) Capillary electrochromatography with polyacrylamide monolithic stationary phases having bonded dodecyl ligands and sulfonic acid groups: evaluation of column performance with alkyl phenyl ketones and neutral moderately polar pesticides. Electrophoresis 22(12):2593–2599

    Article  CAS  Google Scholar 

  20. Berrada H, Font G, Moltó J (2001) Influence of the solvent on the gas chromatographic behaviour of urea herbicides. Chromatographia 54(3–4):253–262

    Article  CAS  Google Scholar 

  21. Sanusi A, Millet M, Mirabel P, Wortham H (1999) Gas–particle partitioning of pesticides in atmospheric samples. Atmos Environ 33(29):4941–4951

    Article  CAS  Google Scholar 

  22. Gerecke AC, Tixier C, Bartels T, Schwarzenbach RP, Müller SR (2001) Determination of phenylurea herbicides in natural waters at concentrations below 1 ng l−1 using solid-phase extraction, derivatization, and solid-phase microextraction–gas chromatography–mass spectrometry. J Chrom A 930(1):9–19

    Article  CAS  Google Scholar 

  23. Wong A, Sotomayor MDPT (2014) Determination of carbofuran and diuron in FIA system using electrochemical sensor modified with organometallic complexes and graphene oxide. J Electroanal Chem 731:163–171

    Article  CAS  Google Scholar 

  24. Védrine C, Fabiano S, Tran-Minh C (2003) Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 59(3):535–544

    Article  Google Scholar 

  25. Sharma P, Bhalla V, Dravid V, Shekhawat G, Prasad ES, Suri CR (2012) Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes. Sci Rep 877(2):1–7

    Google Scholar 

  26. Coelho-Moreira JDS, Bracht A, Souza ACDSD, Oliveira RF, Sá-Nakanishi ABD, Souza CGMD et al (2013) Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. BioMed Res Int

  27. Wittke K, Hajimiragha H, Dunemann L, Begerow J (2001) Determination of dichloroanilines in human urine by GC–MS, GC–MS–MS, and GC–ECD as markers of low-level pesticide exposure. J Chrom B 755(1):215–228

    Article  CAS  Google Scholar 

  28. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Sa Dubonos et al (2004) Electric field effect in atomically thin carbon films. Sci 306(5696):666–669

    Article  CAS  Google Scholar 

  29. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  30. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  31. Sun W, Lu Y, Wu Y, Zhang Y, Wang P, Chen Y et al (2014) Electrochemical sensor for transgenic maize MON810 sequence with electrostatic adsorption DNA on electrochemical reduced graphene modified electrode. Sens Act B 202:160–166

    Article  CAS  Google Scholar 

  32. Lawal AT (2015) Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131:424–443

    Article  CAS  Google Scholar 

  33. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang S-Y et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5):2910–2918

    Article  CAS  Google Scholar 

  34. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    Article  CAS  Google Scholar 

  35. Zhao H, Ji X, Wang B, Wang N, Li X, Ni R et al (2015) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 65:23–30

    Article  CAS  Google Scholar 

  36. Wu Y, Niu H, Wang K, Liu Q, Li H, Dong X et al (2013) Biosensor based on malic dehydrogenase immobilized in a CdS–graphene–chitosan nanocomposite for root-exuded malic acid determination. Sens Lett 11(2):436–441

    Article  CAS  Google Scholar 

  37. Sun W, Cao L, Deng Y, Gong S, Shi F, Li G et al (2013) Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. Anal Chim Acta 781:41–47

    Article  CAS  Google Scholar 

  38. Song H, Ni Y, Kokot S (2013) A novel electrochemical biosensor based on the hemin–graphene nano-sheets and gold nano-particles hybrid film for the analysis of hydrogen peroxide. Anal Chim Acta 788:24–31

    Article  CAS  Google Scholar 

  39. Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28(1):204–209

    Article  CAS  Google Scholar 

  40. Chen S, Murray RW (1999) Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. J Phys Chem B 103(45):9996–10000

    Article  CAS  Google Scholar 

  41. Li J, Yamada Y, Murakoshi K, Nakato Y (2001) Sustainable metal nano-contacts showing quantized conductance prepared at a gap of thin metal wires in solution. Chem Commun 21:2170–2171

    Article  Google Scholar 

  42. Haruta M (1997) Size-and support-dependency in the catalysis of gold. Catal Today 36(1):153–166

    Article  CAS  Google Scholar 

  43. Li J, Yang J, Yang Z, Li Y, Yu S, Xu Q et al (2012) Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Anal Methods 4(6):1725–1728

    Article  CAS  Google Scholar 

  44. Yue-Rong W, Ping H, Liang Q-L, Guo-An L, Yi-Ming W (2008) Application of carbon nanotube modified electrode in bioelectroanalysis. Chin J Anal Chem 36(8):1011–1016

    Article  Google Scholar 

  45. Won Y-H, Jang HS, Kim SM, Stach E, Ganesana M, Andreescu S et al (2009) Biomagnetic glasses: preparation, characterization, and biosensor applications. Langmuir 26(6):4320–4326

    Article  Google Scholar 

  46. Huang N, Lim H, Chia C, Yarmo M, Muhamad M (2011) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 6:3443

    Article  CAS  Google Scholar 

  47. Madhu R, Dinesh B, Chen S-M, Saraswathi R, Mani V (2015) An electrochemical synthesis strategy for composite based ZnO microspheres–Au nanoparticles on reduced graphene oxide for the sensitive detection of hydrazine in water samples. RSC Adv 5(67):54379–54386

    Article  CAS  Google Scholar 

  48. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  49. Yu H, Xu P, Lee D-W, Li X (2013) Porous-layered stack of functionalized AuNP–rGO (gold nanoparticles–reduced graphene oxide) nanosheets as a sensing material for the micro-gravimetric detection of chemical vapor. J Mater Chem A 1(14):4444–4450

    Article  CAS  Google Scholar 

  50. Guo Y, Sun X, Liu Y, Wang W, Qiu H, Gao J (2012) One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50(7):2513–2523

    Article  CAS  Google Scholar 

  51. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095

    Article  CAS  Google Scholar 

  52. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  53. Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10(1):625–638

    Article  CAS  Google Scholar 

  54. Ping J, Wang Y, Ying Y, Wu J (2012) Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal Chem 84(7):3473–3479

    Article  CAS  Google Scholar 

  55. Salinas-Torres D, Huerta F, Montilla F, Morallón E (2011) Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim Acta 56(5):2464–2470

    Article  CAS  Google Scholar 

  56. Zheng Y, Wang A, Lin H, Fu L, Cai W (2015) A sensitive electrochemical sensor for direct phoxim detection based on an electrodeposited reduced graphene oxide–gold nanocomposite. RSC Adv 5(20):15425–15430

    Article  CAS  Google Scholar 

  57. Chao M, Chen M (2014) Electrochemical determination of phoxim in food samples employing a graphene-modified glassy carbon electrode. Food Anal Methods 7(9):1729–1736

    Article  Google Scholar 

  58. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem and Interfacial Electrochem 101(1):19–28

    Article  CAS  Google Scholar 

  59. Polcaro A, Palmas S, Dernini S (1993) Electrochemical reduction of carbonyl compounds at modified carbon felt electrodes. Electrochim Acta 38(2):199–203

    Article  CAS  Google Scholar 

  60. Wang D-W, Gentle IR, Lu GQM (2010) Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem Commun 12(10):1423–1427

    Article  CAS  Google Scholar 

  61. Niesner R, Heintz A (2000) Diffusion coefficients of aromatics in aqueous solution. J Chem Eng Data 45(6):1121–1124

    Article  CAS  Google Scholar 

  62. Johnson SL, Rumon K (1970) Ring-opening reaction of 1-(N, N-dimethylcarbamoyl) pyridinium chloride with hydroxide. A model for the alkaline diphosphopyridine nucleotide reaction. Biochemistry 9(4):847–857

    Article  CAS  Google Scholar 

  63. Shi Q, Chen M, Diao G (2013) Electrocatalytical reduction of m-nitrophenol on reduced graphene oxide modified glassy carbon electrode. Electrochim Acta 114:693–699

    Article  CAS  Google Scholar 

  64. Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide diuron. Biosens Bioelectron 26(10):4209–4212

    Article  CAS  Google Scholar 

  65. Wong A, de Vasconcelos Lanza MR, Sotomayor MDPT (2013) Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29H, 31H-phthalocyanine. J Electroanal Chem 690:83–88

    Article  CAS  Google Scholar 

  66. Bhalla V, Sharma P, Pandey SK, Suri CR (2012) Impedimetric label-free immunodetection of phenylurea class of herbicides. Sens Actuators B171:1231–1237

    Article  Google Scholar 

  67. Sharma P, Bhalla V, Tuteja S, Kukkar M, Suri CR (2012) Rapid extraction and quantitative detection of the herbicide diuron in surface water by a hapten-functionalized carbon nanotubes based electrochemical analyzer. Analyst 137(10):2495–2502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the financial support of the Fundamental Research Grant Scheme (FRGS/1/2012/ST05/UPM/02/3) and High Impact Research Grant (UM.C/625/1/HIR/MOHE/SC/21) from the Ministry of Higher Education of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ngee Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10800_2016_950_MOESM1_ESM.tif

Supplementary material 1 (TIFF 490 kb). Figure S1. Raman spectra of GO, GO–AuNPs, and rGO–AuNPs after modification on SPE electrode

10800_2016_950_MOESM2_ESM.tif

Supplementary material 2 (TIFF 120 kb). Figure S2. Chronoamperometry curves obtained at rGO–AuNPs/SPE in presence of 10.0 mg ml−1 diuron recorded in PBS (0.01 mol L−1, pH 5.5). Inset: Cottrell plots obtained from the chronoamperometry curves

Supplementary material 3 (TIFF 344 kb). Figure S3. Mechanism of diuron detection at rGO–AuNPs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, N., Lim, H.N., Hajian, R. et al. A promising electrochemical sensor based on Au nanoparticles decorated reduced graphene oxide for selective detection of herbicide diuron in natural waters. J Appl Electrochem 46, 655–666 (2016). https://doi.org/10.1007/s10800-016-0950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0950-4

Keywords

Navigation