Skip to main content
Log in

Semi-Quantum Voting Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Aiming at the problem that the existing voting protocols have high requirements for quantum devices, we propose a semi-quantum voting protocol based on secure direct communication in this paper. In our protocol, the voters need only classical capabilities to participate in the voting process. Before the voting process begins, the scrutineer verifies the identities of the voters so as to ensure the legitimacy of users using semi-quantum secure direct communication channels. Our protocol satisfies the general security requirements of quantum voting protocols and can resist any known quantum attacks. In addition, owing that the voters in our protocol do not need high quantum capabilities, our protocol is more practical than the existing voting protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. Twenty-Eighth ACM Symposium on Theory of Computing. 212-219 (1996)

  3. Christandl, M., Wehner, S.: Quantum anonymous transmissions. Roy B. (eds) Advances in Cryptology - ASIACRYPT 2005 3788, 217–235 (2005)

    Article  MathSciNet  Google Scholar 

  4. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2005)

    Article  ADS  Google Scholar 

  5. Hillery, M., et al.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1-4), 75–81 (2006)

    Article  ADS  Google Scholar 

  6. Hillery, M.: Quantum voting and privacy protection: first steps. Int. Soc. Opt Eng. https://doi.org/10.1117/2.1200610.0419 (2006)

  7. Li, Y., Zeng, G.H.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15(5), 219–223 (2008)

    Article  Google Scholar 

  8. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375(8), 1172–1175 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Jiang, L., He, G.Q., Nie, D., Xiong, J., Zeng, G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 85(4), 042309 (2012)

    Article  ADS  Google Scholar 

  10. Wang, Y.W., Wei, X.H., Zhu, Z.H.: Quantum voting protocols based on the non-symmetric quantum channel with controlled quantum operation teleportation(in Chinese). Acta Phys. Sin. 62(16), 160302 (2013)

    Article  Google Scholar 

  11. Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)

    Article  MathSciNet  Google Scholar 

  12. Thapliyal, K., Sharma, R.D., Pathak, A.: Analysis and improvement of Tian-Zhang-Li voting protocol based on controlled quantum teleportation. arXiv:1602.00791 [quant-ph] (2016)

  13. Wang, Q.L., et al.: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)

    Article  ADS  Google Scholar 

  14. Qin, J.Q., Shi, R.H., Zhang, R.: Quantum voting protocol based on controlled quantum secure direct communication(in Chinese). Chinese J. Quantum Electron. 35(5), 558–566 (2018)

    Google Scholar 

  15. Li, L.J., Gao, F., Zhang, Z.C., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with no more than one ebit of entanglement. Phys. Rev. A 99(1), 012343 (2019)

    Article  ADS  Google Scholar 

  16. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. Process. 20, 128 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Jiang, D.H., Wang, J., Liang, X.Q., et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59(2), 436–444 (2020)

    Article  MathSciNet  Google Scholar 

  18. Liu, B.X., Jiang, D.H., Liang, X.Q., et al.: A novel quantum voting scheme based on BB84-state. Int. J. Theor. Phys. 60(4), 1339–1349 (2021)

    Article  MathSciNet  Google Scholar 

  19. Li, Y.R., Jiang, D.H., Zhang, Y.H., et al.: A quantum voting protocol using single-particle states. Quantum Inf. Process. 20, 110 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semi-quantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zou, X.F., Qiu, D.W., Li, L., et al.: Semi-quantum key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  23. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum key distribution with limited classical Bob. Int. J. Quantum Inf. 11(1), 1350005 (2013)

    Article  MathSciNet  Google Scholar 

  24. Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13, 1457–1465 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  26. Xu, L.: Semi-quantum key distribution protocol based on the hyperentanglement Bell state of polarization-spatial mode. Mod. Phys. Lett. B 34(31), 2050353 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  28. Gu, J., Lin, P.H., Hwang, T.: Double c-not attack and counterattack on ‘three-step semi-quantum secure direct communication protocol’. Quantum Inf. Process. 17(7), 182 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Xie, C., Li, L., Situ, H., et al.: Semi-quantum secure direct communication scheme based on Bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    Article  MathSciNet  Google Scholar 

  30. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, M.M., Liu, J.L., Gong, L.M.: Semi-quantum secure direct communication with authentication based on single-photons. Int. J. Quantum Inf. 17(3), 1950024 (2019)

    Article  MathSciNet  Google Scholar 

  32. Tao, Z., Chang, Y., Zhang, S., et al.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58(9), 2986–2993 (2019)

    Article  Google Scholar 

  33. Rong, Z.B., Qiu, D.W., Mateus, P., et al.: Mediated semi-quantum secure direct communication. Quantum Inf. Process. 20(2), 1–13 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rong, Z.B., Qiu, D.W., Zou, X.F.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59(6), 1807–1819 (2020)

    Article  MathSciNet  Google Scholar 

  35. Zhou, N.R., Zhu, K.N., Bi, W., et al.: Semi-quantum identification. Quantum Inf. Process. 18, 197 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59(3), 663–676 (2020)

    Article  MathSciNet  Google Scholar 

  37. Yan, L.L., Zhang, S.B., et al.: Semi-quantum key agreement and private comparison protocols using Bell states. Int. J. Theor. Phys. 58(11), 3852–3862 (2019)

    Article  MathSciNet  Google Scholar 

  38. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  Google Scholar 

  39. Lin, S., Zhang, X., Guo, G.D., Wang, L.L., Liu, X.F.: Multi-party quantum key agreement. Phys. Rev. A 104(4), 042421 (2021)

    Article  ADS  Google Scholar 

  40. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  41. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  42. He, Y.F., Ma, W.P.: Multi-party quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18(1), 4 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62171264) and Shandong Provincial Natural Science Foundation (Grant No. ZR2019MF023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YP., Gao, DZ., Liang, XQ. et al. Semi-Quantum Voting Protocol. Int J Theor Phys 61, 78 (2022). https://doi.org/10.1007/s10773-022-05071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05071-4

Keywords

Navigation