Skip to main content
Log in

Abstract

In this work we study the convex set of quantum states from a quantum logical point of view. We consider an algebraic structure based on the convex subsets of this set. The relationship of this algebraic structure with the lattice of propositions of quantum logic is shown. This new structure is suitable for the study of compound systems and shows new differences between quantum and classical mechanics. These differences are linked to the nontrivial correlations which appear when quantum systems interact. They are reflected in the new propositional structure, and do not have a classical analogue. This approach is also suitable for an algebraic characterization of entanglement and it provides a new entanglement criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D’Espagnat, D.: Conceptual Foundations of Quantum Mechanics. Benjaming, Reading (1976)

    Google Scholar 

  2. Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Kirkpatrik, K.A.: arXiv:quant-ph/0109146, 21 Oct. 2001

  4. D’Espagnat, D.: arXiv:quant-ph/0111081, 14 Nov. 2001

  5. Masillo, F., Scolarici, G., Sozzo, S.: arXiv:0901.0795 [quant-ph], 7 Jan. 2009

  6. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, New York (2007)

    Google Scholar 

  7. Castagnino, M., Fortin, S.: Int. J. Theor. Phys. 50(7), 2259–2267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castagnino, M., et al.: Class. Quantum Gravity 25, 154002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. Horodecki, M., Horodecki, P., Horodecki, R.: In: Alber, G., et al. (eds.) Quantum Information. Springer Tracts in Modern Physics, vol. 173, p. 151. Springer, Berlin (2001)

    Chapter  Google Scholar 

  10. Birkhoff, G., von Neumann, J.: Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  11. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  12. Jauch, J.M.: Foundations of Quantum Mechanics. Addison-Wesley, Cambridge (1968)

    MATH  Google Scholar 

  13. Piron, C.: Foundations of Quantum Physics. Addison-Wesley, Cambridge (1976)

    MATH  Google Scholar 

  14. Aerts, D.: Int. J. Theor. Phys. 39, 483–496 (2000)

    Article  Google Scholar 

  15. Aerts, D.: J. Math. Phys. 25, 1434–1441 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. Domenech, G., Holik, F., Massri, C.: J. Math. Phys. 51, 052108 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  17. Mielnik, B.: Commun. Math. Phys. 9, 55–80 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Mielnik, B.: Commun. Math. Phys. 15, 1–46 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Mielnik, B.: Commun. Math. Phys. 37, 221–256 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  20. von Neumann, J.: Mathematical Foundations of Quantum Mechanics, 12th edn. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  21. Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  22. Werner, R.: Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  23. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  24. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  25. Aubrun, G., Szarek, S.: Phys. Rev. A 73, 022109 (2006)

    Article  ADS  Google Scholar 

  26. Valentine, F.: Convex Sets. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  27. Holik, F., Plastino, A.: Convex polytopes and quantum separability. Phys. Rev. A (to be published)

Download references

Acknowledgements

This work was partially supported by the following grants: PIP No 6461/05 (CONICET). We wish to thank G. Domenech for careful reading and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Holik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holik, F., Massri, C. & Ciancaglini, N. Convex Quantum Logic. Int J Theor Phys 51, 1600–1620 (2012). https://doi.org/10.1007/s10773-011-1037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1037-y

Keywords

Navigation