Skip to main content
Log in

Predicting Decoherence in Discrete Models

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The general aim of this paper is to supply a method to decide whether a discrete system decoheres or not, and under what conditions decoherence occurs, with no need of appealing to computer simulations to obtain the time evolution of the reduced state. In particular, a lemma is presented as the core of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeh, H.D.: Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  2. Zeh, H.D.: Found. Phys. 3, 109 (1973)

    Article  ADS  Google Scholar 

  3. Zurek, W.H.: Phys. Rev. D 26, 1862 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Zurek, W.H.: Prog. Theor. Phys. 89, 281 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Paz, J.P.: In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Heidelberg (2002)

    Google Scholar 

  6. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Diosi, L.: Phys. Lett. A 120, 377 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. Diosi, L.: Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  9. Milburn, G.J.: Phys. Rev. A 44, 5401 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  10. Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  11. Casati, G., Chirikov, B.: Phys. Rev. Lett. 75, 349 (1995)

    Article  ADS  Google Scholar 

  12. Casati, G., Chirikov, B.: Physica D 86, 220 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Adler, S.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  14. Bonifacio, R., Olivares, S., Tombesi, P., Vitali, D.: Phys. Rev. A 61, 053802 (2000)

    Article  ADS  Google Scholar 

  15. Ford, G.W., O’Connell, R.F.: Phys. Lett. A 286, 87 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Frasca, M.: Phys. Lett. A 308, 135 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Sicardi Shifino, A.C., Abal, G., Siri, R., Romanelli, A., Donangelo, R.: arXiv:quant-ph/0308162 (2003)

  18. Castagnino, M.: Int. J. Theor. Phys. 38, 1333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000)

    Article  ADS  Google Scholar 

  20. Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1767 (2000)

    Article  MathSciNet  Google Scholar 

  21. Castagnino, M., Lombardi, O.: Int. J. Theor. Phys. 42, 1281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Castagnino, M.: Physica A 335, 511 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695 (2004)

    Article  MATH  Google Scholar 

  24. Castagnino, M.: Braz. J. Phys. 35, 375 (2005)

    Article  Google Scholar 

  25. Castagnino, M., Lombardi, O.: Phys. Rev. A 72, 012102 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Castagnino, M., Lombardi, O.: Philos. Sci. 72, 764 (2005)

    Article  MathSciNet  Google Scholar 

  27. Castagnino, M.: Phys. Lett. A 357, 97 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Castagnino, M., Gadella, M.: Found. Phys. 36, 920 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Castagnino, M., Lombardi, O.: Chaos Solitons Fractals 28, 879 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Castagnino, M., Fortin, S., Laura, R., Lombardi, O.: Class. Quantum Gravity 25, 154002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Castagnino, M., Fortin, S., Lombardi, O.: J. Phys. A, Math. Theor. 43, 065304 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  32. Castagnino, M., Fortin, S., Lombardi, O.: Mod. Phys. Lett. A 25, 1431 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Omnès, R.: arXiv:quant-ph/0106006 (2001)

  34. Omnès, R.: Phys. Rev. A 65, 052119 (2002)

    Article  ADS  Google Scholar 

  35. Benatti, F., Floreanini, R. (eds.): Lecture Notes in Physics, vol. 622. Springer, Berlin (2003)

    Google Scholar 

  36. Antoniou, I.E., Suchenecki, Z., Laura, R., Tasaki, S.: Physica A 241, 737 (1997)

    Article  ADS  Google Scholar 

  37. Gaioli, F., García-Álvarez, E., Guevara, J.: Int. J. Theor. Phys. 36, 2167 (1997)

    Article  MATH  Google Scholar 

  38. Bochner, S., Chandrasekharan, K.: Fourier Transforms. Princeton University Press, London (1949)

    MATH  Google Scholar 

  39. Oran Brigham, E.: The Fast Fourier Transform and its Applications. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  40. Press, W., Teukolsky, J., Vetterling, E., Flanery, B.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  41. Kauppinen, J., Partanen, J.: Fourier Transforms in Spectroscopy. Wiley-VCH, Berlin (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fortin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnino, M., Fortin, S. Predicting Decoherence in Discrete Models. Int J Theor Phys 50, 2259–2267 (2011). https://doi.org/10.1007/s10773-011-0726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0726-x

Keywords

Navigation