Skip to main content
Log in

Experimental Pool Boiling Heat Transfer Analysis with Copper–Alumina Micro/Nanostructured Surfaces Developed by a Novel Electrochemical Deposition Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The rapid latent heat transfer in boiling heat transfer directs its potential use in a variety of heat transfer devices. A new four-step electrodeposition technique is recommended for the development of the micro–nanostructured surface of Cu–Al2O3 nanoparticles (higher thermal conductive) to increase pool boiling heat transfer performance. The nanoparticles deposited at lower current density have increased the nucleation density and the two-step sintering has improved the physical properties of deposited nanoparticles. Thus, apart from cost effectiveness, reliability, and simplicity, the electrodeposition method is able to provide more stable micro–nanostructured surface. Therefore, the method offered in this work is a proficient method for the development of micro–nanostructured surfaces. After carrying out the surface characterization of structured surfaces, the boiling heat transfer performance is studied through experimentations. The influence of different parameters on pool boiling heat transfer (PBHT) enhancement is also analyzed. Based on the study of the achieved results, it is inferred that the fabricated micro–nanostructured surfaces are uniform in structure, achieve higher critical heat flux (92 %), and PBHT coefficient (6.1 times). Thus, the proposed heating surfaces may be considered as a prospective candidate for the cooling of microelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data and materials will be provided on request.

Abbreviations

A cs :

Heating surface area, m2

h :

Heat transfer coefficient, kW·m−2·K−1

I :

Current, A

k :

Thermal conductivity, W·m−1·K−1

q :

Heat flux, kW·m−2

T f :

Working fluid temperature, K

T s :

Heating surface temperature, K

ΔT :

Wall superheat temperature, K

V :

Voltage, V

Δx :

Vertical distance between two thermocouples position

References

  1. D.E. Kim, D.I. Yu, D.W. Jerng, M.H. Kim, H.S. Ahn, Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp. Therm. Fluid Sci. 66, 173–196 (2015)

    Article  Google Scholar 

  2. M. Shojaeian, A. Kosar, Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Therm. Fluid Sci. 63, 45–73 (2015)

    Article  Google Scholar 

  3. A.K.M.M. Morshed, T.C. Paul, J. Khan, Effect of Cu–Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl. Therm. Eng. 51, 1135–1143 (2013)

    Article  Google Scholar 

  4. K.N. Rainey, S.M. You, Effect of heater size and orientation on pool boiling heat transfer from microporous coated surfaces. Int. J. Heat Mass Transf. 44, 2589–2599 (2001)

    Article  Google Scholar 

  5. B.J. Jones, J.P. McHale, S.V. Garimella, The influence of surface roughness on nucleate pool boiling heat transfer. J. Heat Transf. 131, 121009 (2009)

    Article  Google Scholar 

  6. J.J. Wei, H. Honda, Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72. Int. J. Heat Mass Transf. 46, 4059–4070 (2003)

    Article  Google Scholar 

  7. S.K. Gupta, R.D. Misra, An experimental investigation on pool boiling heat transfer enhancement using Cu–Al2O3 nano-composite coating. Exp. Heat Transf. 32, 133–158 (2019)

    Article  ADS  Google Scholar 

  8. X. Zheng, C.W. Park, Experimental study of the sintered multi-walled carbon nanotube/copper microstructures for boiling heat transfer. Appl. Therm. Eng. 86, 14–26 (2015)

    Article  Google Scholar 

  9. S.S. Hsieh, C.J. Weng, Nucleate pool boiling from coated surfaces in saturated R-134a and R-407c. Int. J. Heat Mass Transf. 40, 519–532 (1997)

    Article  Google Scholar 

  10. S. Das, D.S. Kumar, S. Bhaumik, Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl. Therm. Eng. 96, 555–567 (2016)

    Article  Google Scholar 

  11. C. Li, G.P. Peterson, Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. J. Heat Transf. 129, 1465–1475 (2007)

    Article  Google Scholar 

  12. Z.G. Xu, C.Y. Zhao, Experimental study on pool boiling heat transfer in gradient metal foams. Int. J. Heat Mass Transf. 85, 824–829 (2015)

    Article  Google Scholar 

  13. C. Li, Z. Wang, P.I. Wang, Y. Peles, N. Koratkar, G.P. Peterson, Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008)

    Article  Google Scholar 

  14. Z. Yao, Y.W. Lu, S.G. Kandlikar, Effects of nanowire height on pool boiling performance of water on silicon chips. Int. J. Therm. Sci. 50, 2084–2090 (2011)

    Article  Google Scholar 

  15. Y. Chen, D.C. Mo, H.B. Zhao, N. Ding, S.S. Lu, Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays. Sci. China Ser. E Technol. Sci. 52, 1596–1600 (2009)

    Article  ADS  Google Scholar 

  16. K. Nagato, S. Miyazaki, S. Yamada, M. Nakao, Nano/microcomposite surface fabricated by chemical treatment/microembossing for control of bubbles in boiling heat transfer. CIRP Ann. Manuf. Technol. 65, 511–514 (2016)

    Article  Google Scholar 

  17. S.H. Li, R. Furberg, M.S. Toprak, B. Palm, M. Muhammed, Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv. Funct. Mater. 18, 2215–2220 (2008)

    Article  Google Scholar 

  18. M.S. El-Genk, A.F. Ali, Enhanced nucleate boiling on copper micro-porous surfaces. Int. J. Multiph. Flow 36, 780–792 (2010)

    Article  Google Scholar 

  19. C.M. Patil, K.S.V. Santhanam, S.G. Kandlikar, Development of a two-step electrodeposition process for enhancing pool boiling. Int. J. Heat Mass Transf. 79, 989–1001 (2014)

    Article  Google Scholar 

  20. P.F. Xu, Q. Li, Y.M. Xuan, Enhanced boiling heat transfer on composite porous surface. Int. J. Heat Mass Transf. 80, 107–114 (2015)

    Article  Google Scholar 

  21. Y.Q. Wang, D.C. Mo, S.S. Lyu, Enhanced pool boiling heat transfer on mono and multi-layer micro–nano bi-porous copper surfaces, in Proceedings of the ASME 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, Singapore (2016)

  22. A. Jaikumar, S.G. Kandlikar, Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels. Int. J. Heat Mass Transf. 95, 795–805 (2016)

    Article  Google Scholar 

  23. Y.-Q. Wang, S.-S. Lyu, J.-L. Luo, Z.-Y. Luo, Y.-X. Fu, Y. Heng, J.-H. Zhang, D.-C. Mo, Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability. Appl. Surf. Sci. 422, 388–393 (2017)

    Article  ADS  Google Scholar 

  24. L.N. Dong, X.J. Quan, P. Cheng, An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int. J. Heat Mass Transf. 71, 189–196 (2014)

    Article  Google Scholar 

  25. W. Fritz, Maximum volume of vapor bubbles. Phys. Z. 36, 379–384 (1935)

    Google Scholar 

  26. H.T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transf. 52, 5459–5471 (2009)

    Article  Google Scholar 

  27. A.R. Betz, J. Xu, H.H. Qiu, D. Attinger, Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 3 (2010)

    Article  Google Scholar 

  28. X.M. Dai, X.Y. Huang, F.H. Yang, X.D. Li, J. Sightler, Y.C. Yang, C. Li, Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 102, 5 (2013)

    Article  Google Scholar 

  29. H. Jo, D.I. Yu, H. Noh, H.S. Park, M.H. Kim, Boiling on spatially controlled heterogeneous surfaces: wettability patterns on microstructures. Appl. Phys. Lett. 106, 5 (2015)

    Article  Google Scholar 

  30. M. Zupančič, M. Steinbucher, P. Gregorcic, I. Golobic, Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilicpolydimethylsiloxane-silica patterned surfaces. Appl. Therm. Eng. 91, 288–297 (2015)

    Article  Google Scholar 

  31. S.K. Gupta, R.D. Misra, Experimental study of pool boiling heat transfer on copper surfaces with Cu–Al2O3 nanocomposite coatings. Int. Commun. Heat Mass Transf. 97, 47–55 (2018)

    Article  Google Scholar 

  32. S.K. Gupta, R.D. Misra, An experimental investigation on flow boiling heat transfer enhancement using Cu–TiO2 nanocomposite coating on copper substrate. Exp. Therm. Fluid Sci. 98, 406–419 (2018)

    Article  Google Scholar 

  33. H. Shin, J. Dong, M. Liu, Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 19, 1611–1614 (2003)

    Google Scholar 

  34. S. Li, R. Furberg, M.S. Toprak, B. Palm, M. Muhammed, Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv. Funct. Mater. 18, 2210–2215 (2008)

    Article  Google Scholar 

  35. J.P. Holman, Experimental Methods for Engineers, 7th edn. (Tata McGraw Hill Education Private Limited, New York, 2007)

    Google Scholar 

  36. W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids. ASME 74, 969–976 (1952)

    Google Scholar 

  37. G. Li, B. Thomas, J. Stubbins, Modeling creep and fatigue of copper alloys. Metall. Mater. Trans. A 31, 2491–2502 (2000)

    Article  Google Scholar 

  38. S.G. Kandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. ASME J. Heat Transf. 123, 1071–1079 (2001)

    Article  Google Scholar 

  39. S.G. Kandlikar, Handbook of Phase Change: Boiling and Condensation (CRC Press, Boca Raton, 1999)

    Google Scholar 

  40. A. Bar-Cohen, A. McNeil, Parametric effects on pool boiling critical heat flux in dielectric liquids, in Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling (ASME, Santa Barbara, 1992)

  41. H.S. Ahn, H.J. Jo, S.H. Kang, M.H. Kim, Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl. Phys. Lett. 98, 71908 (2011)

    Article  Google Scholar 

  42. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 50, 4105–4116 (2007)

    Article  Google Scholar 

  43. T. Hibiki, M. Ishii, Active nucleation site density in boiling system. Int. J. Heat Mass Transf. 46, 2587–2601 (2003)

    Article  MATH  Google Scholar 

  44. N. Basu, G.R. Warrier, V.K. Dhir, Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. ASME J. Heat Transf. 124, 717–728 (2002)

    Article  Google Scholar 

  45. R.J. Benjamin, A.R. Balakrishnan, Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp. Therm. Fluid Sci. 15, 32–42 (1997)

    Article  Google Scholar 

  46. S. Kotthoff, D. Gorenflo, E. Danger, A. Luke, Heat transfer and bubble formation in pool boiling: effect of basic surface modifications for heat transfer enhancement. Int. J. Therm. Sci. 45, 217–236 (2006)

    Article  Google Scholar 

  47. A.K. Das, P.K. Das, P. Saha, Performance of different structured surfaces in nucleate pool boiling. Appl. Therm. Eng. 29, 3643–3653 (2009)

    Article  Google Scholar 

  48. P. Griffith, J.D. Wallis, The role of surface conditions in nucleate boiling. The Office of Naval Research, Technical Report No. 14 (1958), pp. 1–16

  49. S.M. Kwark, R. Kumar, G. Moreno, J. Yoo, S.M. You, Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transf. 53, 972–981 (2010)

    Article  Google Scholar 

  50. A.R. Betz, J. Xu, H. Qiu, D. Attinger, Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 141909 (2010)

    Article  ADS  Google Scholar 

  51. S. Das, B. Saha, S. Bhaumik, Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl. Therm. Eng. 113, 1345–1357 (2017)

    Article  Google Scholar 

  52. B. Shi, Y.-B. Wang, K. Chen, Pool boiling heat transfer enhancement with copper nanowire arrays. Appl. Therm. Eng. 75, 115–121 (2015)

    Article  Google Scholar 

  53. M.-C. Lu, C.-H. Huang, C.-T. Huang, Y.-C. Chen, A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density. Int. J. Therm. Sci. 91, 133–141 (2015)

    Article  Google Scholar 

Download references

Funding

No funding used for this work.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work and paper writing are combined contributions from both authors. Both authors have equal contribution in this work.

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Misra, R.D. Experimental Pool Boiling Heat Transfer Analysis with Copper–Alumina Micro/Nanostructured Surfaces Developed by a Novel Electrochemical Deposition Technique. Int J Thermophys 44, 112 (2023). https://doi.org/10.1007/s10765-023-03218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03218-x

Keywords

Navigation