Skip to main content
Log in

Experimental Study on the Flow Boiling (Two-Phase) Heat Transfer of High-Density Micro-/Nano-Porous Copper-Alumina-Copper Nano-composite-Coated Surfaces

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Boiling is a phase change heat transfer process that transfers latent heat quickly, making it suitable for use in various heat transfer systems. An important worry for the boiling performance degradation is the durability of the artificial nano-/microporous interfaces concerning the bottom surface. This study therefore proposes a novel three-step surface creation process (chemical etching, electroplating, and sintering process). Wet/chemical etching is first used to form three distinct micro/nanostructured substrates (ES#1, 2, 3). The most effective etched substrate (ES#3) is again employed as a cathode for the electrochemical depositing process or next-of-surface manufacturing. To strengthen the link between the etched layer (ES#3) and the surface of the coating (copper-alumina), the electroplating produced substrate (ES#4) is sintered in a predetermined environment. The enhanced boiling efficiency obtained on ES#4 is attributable to the appropriate bonding among ES#3 and electroplated nanoparticles (Cu-Al2O3). By maintaining a consistent temperature across the heater's topmost layer and the fin tip, the reduction in resistance at the intermediate level brought on by appropriate binding increases the rate of heat transfer. The critical heat flux (CHF) and heat transfer coefficient (HTC) improvements for ES#4 over bare copper are 184% and 216%, respectively. Additionally, the impact of certain macro- and micro-scale restrictions on the occurrence of flow boiling heat transfer is examined. The ES#4 surface showed better stability during repeated thirty testing cycles, as seen by the much smaller decline in superheat temperatures (1.2 °C) and wettability (32° to 33.7°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Materials and data will be supplied upon request.

References

  1. B Majumder AD Pingale AS Katarkar 2022 Pool boiling heat transfer performance of R-134a on microporous Al surfaces electrodeposited from AlCl3/Urea Ionic Liquid J. Engin. Thermophys. 31 720 736 https://doi.org/10.1134/S1810232822040166

    Article  Google Scholar 

  2. SK Gupta RD Misra 2021 Flow boiling heat transfer performance of copper-alumina micro-nanostructured surfaces developed by forced convection electrodeposition technique Chem. Eng. Process.-Process Intensif. 164 108408

    Google Scholar 

  3. CS Sujith Kumar G Udaya Kumar MR Mata Arenales C-C Hsu S Suresh P-H Chen 2018 Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings Appl. Therm. Eng. 137 868 891

    Google Scholar 

  4. SG Kandlikar PH Spiesman 1988 Effect of surface finish on flow boiling heat transfer ASME Heat Transf. Div. Publ. Htd. 361 157 163

    Google Scholar 

  5. JMS Jabardo G Ribatski E Stelute 2009 Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123 Exp. Thermal Fluid Sci. 33 4 579 590

    Google Scholar 

  6. BJ Jones SV Garimella 2009 Surface roughness effects on flow boiling in microchannels J. Thermal Sci. Eng. Appl. 1 4 041007

    Google Scholar 

  7. H Yu R Sheikholeslami WO Doherty 2004 Flow boiling heat transfer of water and sugar solutions in an annulus AIChE J. 50 6 1119 1128

    Google Scholar 

  8. Campbell, N.; Hawley, J.; Leathard, M.; Horrocks, R., Wong, L.: Nucleate boiling investigations and the effects of surface roughness, SAE Technical Paper, (1999).

  9. YM Yang JR Maa 1984 Boiling of suspension of solid particles in water Int. J. Heat Mass Transf. 27 1 145 147

    Google Scholar 

  10. Prajapati, O.S.; Rohatgi, N.: Flow boiling heat transfer enhancement by using ZnO-water nanofluids. Sci. Technol. Nucl. Install. (2014). https://doi.org/10.1155/2014/890316

    Article  Google Scholar 

  11. E Abedini A Behzadmehr S Sarvari S Mansouri 2013 Numerical investigation of subcooled flow boiling of a nanofluid Int. J. Therm. Sci. 64 232 239

    Google Scholar 

  12. A Moita E Teodori A Moreira 2015 Influence of surface topography in the boiling mechanisms Int. J. Heat Fluid Flow 52 50 63

    Google Scholar 

  13. A Das P Das P Saha 2009 Performance of different structured surfaces in nucleate pool boiling Appl. Therm. Eng. 29 17 3643 3653

    Google Scholar 

  14. D Gorenflo D Kenning 2010 H2 Pool Boiling Springer Berlin

    Google Scholar 

  15. Cooper, M.G.: Saturation nucleate pool boiling-a simple correlation. IChemE Symp. Ser. 86, 786 (1984).

    Google Scholar 

  16. WM Rohsenow 1951 A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids MIT Division of Industrial Cooporation Cambridge, Mass

    Google Scholar 

  17. HS Ahn V Sathyamurthi D Banerjee 2009 Pool boiling experiments on a nanostructured surface IEEE Trans. Compon. Packag. Tech. 32 156 162

    Google Scholar 

  18. CS Sujith Kumar S Suresh L Yang Q Yang S Aravind 2014 Flow boiling heat transfer enhancement using carbon nanotube coating Appl. Therm. Eng. 65 166 177

    Google Scholar 

  19. I Mudawar TM Anderson 1993 Optimization of enhanced surfaces for high flux chip cooling by pool boiling J. Electron. Packaging 115 89 99

    Google Scholar 

  20. X Dai F Yang R Fang T Yemame JA Khan C Li 2013 Enhanced single- and two phase transport phenomena using flow separation in a micro gap with copper woven mesh coatings Appl. Therm. Eng. 54 281 288

    Google Scholar 

  21. S Kottoff D Gorenflo E Danger A Luke 2006 Heat transfer and bubble formation in pool boiling: effect of basic surface modifications for heat transfer enhancement Int. J. Therm. Sci. 4 217 236

    Google Scholar 

  22. KE Gungor RHS Winterton 1986 A general correlation for flow boiling in tubes and annuli Int. J. Heat Mass Transf. 29 351 358 https://doi.org/10.1016/0017-9310(86)90205-x

    Article  Google Scholar 

  23. DBR Kenning MG Cooper 1989 Saturated flow boiling of water in vertical tubes Int J Heat Mass Transf. 32 3 445 458 https://doi.org/10.1016/0017-9310(89)90132-4

    Article  Google Scholar 

  24. V Khanikar I Mudawar T Fisher 2009 Effects of carbon nanotube coating on flow boiling in a micro-channel Int. J. Heat Mass Transf. 52 3805 3817

    Google Scholar 

  25. AKMM Morshed F Yang MY Ali JA Khan C Li 2012 Enhanced flow boiling in a microchannel with integration of nanowires Appl. Therm. Eng. 32 68 75

    Google Scholar 

  26. D Li GS Wu W Wang YD Wang D Liu DC Zhang YF Chen GP Peterson R Yang 2012 Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires Nano Lett. 12 3385 3390

    Google Scholar 

  27. F Yang X Dai Y Peles P Cheng C Li 2013 Can multiple flow boiling regimes be reduced into a single one in microchannels? Appl. Phys. Lett. 103 043122-1 43125

    Google Scholar 

  28. F Yang X Dai Y Peles P Cheng J Khan C Li 2014 Flow boiling phenomena in a single annular flow regime in microchannels (II): reduced pressure drop and enhanced critical heat flux Int. J. Heat Mass Transf. 68 716 724

    Google Scholar 

  29. F Yang X Dai Y Peles P Cheng J Khan C Li 2014 Flow boiling phenomena in a single annular flow regime in microchannels (I): characterization of flow boiling heat transfer Int. J. Heat Mass Transf. 68 703 715

    Google Scholar 

  30. HJ Jo SH Kim H Kim J Kim MH Kim 2012 Nucleate boiling performance on nano/microstructures with different wetting surfaces Nanoscale Res. Lett. 7 242 250

    Google Scholar 

  31. Jo, H.J.; Kim, H.; Kim, H.S.; Kim, S.; Kang, S.H.; Kim, J.; Kim, M.H.: Experimental study of boiling phenomena by micro/milli hydrophobic dot on silicon surface in pool boiling, In: Proceedings of the Seventh International Conference on Nanochannels, Microchannels and Minichannels, A.S.M.E, Pohang, New York, pp. 93–97 (2009).

  32. Takata, Y.; Hidaka, S.; Kohno, M.: Enhanced nucleate boiling by superhydrophobic coating with checkered and spotted patterns, In: Proceedings of the Sixth International Conference on Boiling Heat Transfer, Spoleto, Curran Associates Inc, New York, pp. 240–244 (2006).

  33. Y Nam J Wu G Warrier YS Ju 2009 Experimental and numerical study of single bubble dynamics on a hydrophobic surface J. Heat. Transf. 131 120 124

    Google Scholar 

  34. HT Phan N Caney P Marty S Colassan J Gavillet 2011 Flow boiling of water on titanium and diamond like carbon coated surface in a microchannel Front. Heat. Mass Transf. 2 0103002 1 4

    Google Scholar 

  35. BJ Zhang KJ Kim H Yoon 2012 Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling Int. J. Heat Mass Transf. 55 7487 7498

    Google Scholar 

  36. CC Hsu PH Chen 2012 Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings Int. J. Heat Mass Transf. 55 3713 3719

    Google Scholar 

  37. CY Yang CF Liu 2013 Effect of coating layer thickness for boiling heat transfer on microporous coated surface in confined and unconfined spaces Exp. Therm. Fluid Sci. 47 40 47

    Google Scholar 

  38. SK Gupta RD Misra 2019 An experimental investigation on pool boiling heat transfer enhancement using Cu-Al 2 O 3 nano-composite coating Exp. Heat Transf. 32 133 158

    Google Scholar 

  39. CM Patil KSV Santhanam SG Kandlikar 2014 Development of a two-step electrodeposition process for enhancing pool boiling Int. J. Heat Mass Transf. 79 989 1001

    Google Scholar 

  40. A Sitara M Može M Crivellari J Schille I Golobič 2020 Nucleate pool boiling heat transfer on etched and laser structured silicon surfaces Int. J. Heat Mass Transf. 147 118956

    Google Scholar 

  41. TS Choi W Hees 2015 Chemical etching and patterning of copper, silver, and gold films at low temperature ECS J Solid State Technol 4 N3084 N3093

    Google Scholar 

  42. JP Holman 2007 Experimental Methods for Engineers 7 Tata McGraw Hill Education Private Limited USA

    Google Scholar 

  43. SG Kandlikar 2001 A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation J. Heat Transf. 123 6 1071 1079

    Google Scholar 

  44. KH Chu R Enright EN Wang 2012 Structured surfaces for enhanced pool boiling heat transfer Appl. Phys. Lett. 100 24 241603 241603-4

    Google Scholar 

  45. AKMM Morshed TC Paul J Khan 2013 Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel Appl. Therm. Eng. 51 1135 1143

    Google Scholar 

  46. HS Ahn H Kim H Jo S Kang W Chang MH Kim 2010 Experimental study ofcritical heat flux enhancement during forced convective flow boiling ofnanofluid on a short heated surface Int. J. Multiphase Flow 36 5 375 384

    Google Scholar 

  47. VK Dhir 1998 Boiling heat transfer Annu. Rev. Fluid Mech. 30 1 365 401

    Google Scholar 

  48. Griffith, P.; Walls, J. D.: The role of surface conditions in nucleate boiling, The Office of Naval Research, Technical Report No. 14. pp. 1–16.

  49. N. Zuber: Hydrodynamic Aspects of Boiling Heat [Internet]. Res. Lab. Los Angeles Ramo-Wooldridge Corp. Research Laboratory, Los Angeles and Ramo-Wooldridge Corporation, University of California, Los Angeles, CA; (1959). Available from: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4175511

  50. Y Haramura Y Katto 1983 A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids Int. J. Heat Mass Transf. 26 389 399

    Google Scholar 

Download references

Acknowledgements

The SAIF at IIT Mumbai, India, and NIT, Silchar, India, who provided the FEG-SEM and boiling experimental facilities, respectively, are warmly acknowledged by the authors.

Funding

Funding was not obtained for this project.

Author information

Authors and Affiliations

Authors

Contributions

Author has all contribution in this work.

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Ethics declarations

Conflict of interest

There are no disclosed conflicts of interest for the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K. Experimental Study on the Flow Boiling (Two-Phase) Heat Transfer of High-Density Micro-/Nano-Porous Copper-Alumina-Copper Nano-composite-Coated Surfaces. Arab J Sci Eng 49, 8237–8259 (2024). https://doi.org/10.1007/s13369-024-08846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-024-08846-5

Keywords

Navigation