Skip to main content
Log in

Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Surface with TiO2 nanotube arrays (TNTAs) is superhydrophilic and of great specific area. This paper investigates the pool boiling characteristics at the thermal interface with TNTAs. The results show that the TNTAs interface can enhance the pool boiling heat transfer compared to the pure Ti metal plate. The bubbles formed at the initial nucleation state are very small and released in higher frequency. The pool boiling heat transfer enhancement at the TNTAs interface may be attributed to the high density of nucleate site, high intrinsic heating area of nanotubes layer, superhydrophilicity and the vertically oriented nanotube structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theofanous T G, Tu J P, Dinh A T, et al. The boiling crisis phenomenon Part I: Nucleation and nucleate boiling heat transfer. Exp Therm Fluid Sci, 2002, 26(6–7): 775–792

    Article  Google Scholar 

  2. Bergles A E, Chyu M C. Characteristics of nucleate pool boiling from porous metallic coatings. J Heat Trans-T ASME, 1982, 104(2): 279–285

    Article  Google Scholar 

  3. Li C, Peterson G P, Wang Y X. Evaporation/boiling in thin capillary wicks (I)-wick thickness effects. J Heat Trans-T ASME, 2006, 128(12): 1312–1319

    Article  Google Scholar 

  4. Liter S G, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int J Heat Mass Tran, 2001, 44(22): 4287–4311

    Article  Google Scholar 

  5. Das S K, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Tran, 2003, 46(5): 851–862

    Article  MATH  Google Scholar 

  6. Hsu Y Y. On the size range of active nucleation cavities on a heating surface. J Heat Trans-T ASME, 1962, 84(3): 207–216

    Article  Google Scholar 

  7. Yang S R, Kim R H. A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics. Int J Heat Mass Tran, 1988, 31(6): 1127–1135

    Article  Google Scholar 

  8. Peng X F, Hu H Y, Wang B X. Boiling nucleation during liquid flow in microchannels. Int J Heat Mass Tran, 1998, 41(1): 101–106

    Article  MATH  Google Scholar 

  9. Ahn H S, Sinha N, Zhang M, et al. Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests. J Heat Trans-T ASME, 2006, 128(12): 1335–1342

    Article  Google Scholar 

  10. Li S H, Furberg R, Toprak M S, et al. Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Funct Mater, 2008, 18(15): 2215–2220

    Article  Google Scholar 

  11. Li C, Wang Z K, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling. Small, 2008, 4(8): 1084–1088

    Article  Google Scholar 

  12. Chen R, Lu M C, Srinivasan V, et al. Nanowires for enhanced boiling heat transfer. Nano Lett, 2009, 9(2): 548–533

    Article  Google Scholar 

  13. Chen Y, Mo D C, Zhao H B, et al. Pool boiling performance at TiO2 nanotube interface (in Chineses). J Eng Thermophys, 2009, 30(4): 638–640

    Google Scholar 

  14. Zhang J T, Manglik R M. Additive adsorption and interfacial characteristics of nucleate pool boiling in aqueous surfactant solutions. J Heat Trans-T ASME, 2005, 127(7): 684–691

    Article  Google Scholar 

  15. Takata Y, Hidaka S, Masuda M, et al. Pool boiling on a superhydrophilic surface. Int J Energ Res, 2003, 27(2): 111–119

    Article  Google Scholar 

  16. Takata Y, Hidaka S, Cao J M, et al. Effect of surface wettability on boiling and evaporation. Energy, 2005, 30(2–4): 209–220

    Article  Google Scholar 

  17. Kim S J, Bang I C, Buongiorno J, et al. Effects of nanoparticles deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 2006, 89(15): 153107

    Article  Google Scholar 

  18. Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res, 2001, 16(12): 3331–3334

    Article  Google Scholar 

  19. Zhao J L, Wang X H, Sun T Y, et al. Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. J Alloy Compd, 2007, 434–435: 792–795

    Article  Google Scholar 

  20. Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater, 1998, 10(2): 135–138

    Article  Google Scholar 

  21. Hosono E, Matsuda H, Honma I, et al. Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation. Langmuir, 2007, 23(14): 7447–7450

    Article  Google Scholar 

  22. Attard P. Bridging bubbles between hydrophobic surfaces. Langmuir, 1996, 12(6): 1693–1695

    Article  Google Scholar 

  23. Parker J L, Claesson P M, Attard P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J Phys Chem, 1994, 98(34): 8468–8480

    Article  Google Scholar 

  24. Holmberg M, Kuhle A, Garnaes J, et al. Nanobubble trouble on gold surfaces. Langmuir, 2003, 19(25): 10510–10513

    Article  Google Scholar 

  25. Cavicchi R E, Avedisian C T. Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles. Phys Rev Lett, 2007, 98(12): 124501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuShen Lu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50846069)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Mo, D., Zhao, H. et al. Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays. Sci. China Ser. E-Technol. Sci. 52, 1596–1600 (2009). https://doi.org/10.1007/s11431-009-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0195-0

Keywords

Navigation