Skip to main content
Log in

Flow Boiling Performance Analysis of Copper–Titanium Oxide Micro-/Nanostructured Surfaces Developed by Single-Step Forced Convection Electrodeposition Technique

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As per the available literature, most of the techniques used for boiling surface modification utilize high operational temperature and longer production duration, ensuing in higher energy utilization with more safety worries for large scale of manufacturing. Again, the important criterion for boiling surfaces is to control the porous layer (porosity) to achieve high rate of cooling. Considering these aspects, a nature-inspired and simple technique for surface modification is proposed in the present work, which is single-step forced convection electrochemical deposition followed by single-step sintering. In this technique, the surface properties can be easily managed. Using this technique, the nanocomposite coatings of higher thermal conductive Cu–TiO2 (~ 300 W/mK) nanoparticles are fabricated on copper heating surface. The growth in nanograins is occurred during sintering process, which enhances the connectivity between the deposited nanograins. The porosity, thickness of porous layer, roughness, and wettability of the electrodeposited structured surfaces are raised with amplified current supply up to 75%, 42 µm, 1.32 µm, and 38°, respectively. The heat transfer performances of these developed surfaces are analyzed through flow boiling experiments. The maximum enhancement in critical heat flux (~ 143%) and heat transfer coefficient (~ 153%) is attained on developed coated surface at lower mass flux. These augmentations are attributed to better surface wettability and better surface morphological characteristics of the developed surfaces, which are due to the existence of sufficient liquid microlayer on them. The proposed electrodeposition technique can be employed for practical cooling applications where effective handling of high rate of heat flux is a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig.15
Fig.16
Fig.17
Fig.18
Fig.19

Similar content being viewed by others

Abbreviations

A s :

Cross-sectional area of heating surface, m2

h :

Heat transfer coefficient, W/m2K

I :

Current, A

k :

Thermal conductivity, W/mK

Q :

Supplied heat to the copper block, W

q :

Heat flux, W/cm2

T o :

Outlet working fluid temperature, K

T i :

Inlet fluid temperature, K

T w :

Wall surface temperature of copper block, K

T m :

Mean wall surface temperature of copper block, K

ΔT :

Wall superheat temperature, K

V :

Voltage, V

x :

Distance between two thermocouples positions, m

References

  1. Shojaeian, M.; Kosar, A.: Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Thermal Fluid Sci. 63, 45–73 (2015)

    Google Scholar 

  2. Xu, O.P.; Li, Q.; Xuan, Y.: Enhanced boiling heat transfer on composite porous surface. Int. J. Heat Mass Transf. 80, 107–114 (2015)

    Google Scholar 

  3. Barber, J.; Brutin, D.; Tadrist, L.: A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res. Lett. 6(280), 1–16 (2011)

    Google Scholar 

  4. Sharma, P.O.; Barewar, S.D.; Chougule, S.S.: Experimental investigation of heat transfer enhancement in pool boiling using novel Ag/ZnO hybrid nanofluids. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09922-2

    Article  Google Scholar 

  5. Hae Min Park: Yong Hoon Jeong, Flow boiling CHF enhancement by wettability and flow conditions in a slug flow in the rectangular curved channel. Exp. Thermal Fluid Sci. 91, 388–398 (2018)

    Google Scholar 

  6. Gouda, R.K.; Pathak, M.; Khan, M.K.: Pool boiling heat transfer enhancement with segmented finned microchannels structured surface. Int. J. Heat Mass Transf. 127, 39–50 (2018)

    Google Scholar 

  7. Wang, Y.-Q.; Luo, J.-L.; Heng, Yi.; Mo, D.-C.; Lyu, S.-S.: Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. Int. J. Heat Mass Transf. 119, 333–342 (2018)

    Google Scholar 

  8. Sarangi, S.; Weibel, J.A.; Garimella, S.V.: Effect of particle size on surface-coating enhancement of pool boiling heat transfer. Int. J. Heat Mass Transf. 81, 103–113 (2015)

    Google Scholar 

  9. Arenales, M.R.M.; Kumar, S.C.S.; Kuo, L.-S.: P-HChen, Surface roughness variation effects on copper tubes in pool boiling of water. Int. J. Heat Mass Transf. 151, 119399 (2020)

    Google Scholar 

  10. Yu, Q.; Ma, X.; Wang, M.; Yu, C.; Bai, T.: Influence of embedded particles on microstructure, corrosion resistance and thermal conductivity of CuO/SiO2 and NiO/SiO2 nanocomposite coatings. Appl. Surf. Sci. 254(16), 5089–5094 (2008)

    Google Scholar 

  11. Akarapu, A.: Surface Property Modification of Copper by Nanocomposite Coating. National Institute of Technology, Rourkela (2011)

    Google Scholar 

  12. Gan, Y.; Lee, D.; Chen, X.; Kysar, J.W.: Structure and properties of electrocodeposited Cu-Al2O3 nanocomposite thin films. J. Eng. Mater. Technol. 127(4), 451–456 (2005)

    Google Scholar 

  13. Bund, A.; Thiemig, D.: Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel. Surf. Coat. Technol. 201(16–17), 7092–7099 (2007)

    Google Scholar 

  14. Allahkaram, S.R.; Golroh, S.; Mohammadalipour, M.: Properties of Al2O3 nanoparticle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating. Mater. Des. 32(8–9), 4478–4484 (2011)

    Google Scholar 

  15. Chen, R.; Lu, M.-C.; Srinivasan, V.; Wang, Z.; Cho, H.H.; Majumdar, A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9(2), 548–553 (2009)

    Google Scholar 

  16. Morshed, A.K.M.M.; Yang, F.; Yakut Ali, M.; Khan, J.A.; Li, C.: Enhanced flow boiling in a microchannel with integration of nanowires. Appl. Therm. Eng. 32(2012), 68–75 (2012)

    Google Scholar 

  17. Dixit, P.; Lin, N.; Miao, J.; Wong, W.K.; Choon, T.K.: Silicon nanopillars based 3D stacked microchannel heat sinks concept for enhanced heat dissipation applications in MEMS packaging. Sens. Actuators A 141(2), 685–694 (2008)

    Google Scholar 

  18. Khanikar, V.; Mudawar, I.; Fisher, T.: Effects of carbon nanotube coating on flow boiling in a micro-channel. Int. J. Heat Mass Transf. 52(15–16), 3805–3817 (2009)

    Google Scholar 

  19. Li, C.; Wang, Z.; Wang, P.-I.; Peles, Y.; Koratkar, N.; Peterson, G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4(8), 1084–1088 (2008)

    Google Scholar 

  20. Chang, J.Y.; You, S.M.: Enhanced boiling heat transfer from micro-porous surfaces:effect of a coating composition and method. Int. J. Heat Mass Transf. 40, 4449–4460 (1997)

    Google Scholar 

  21. Yang, C.Y.; Liu, C.F.: Effect of coating layer for boiling heat transfer on micro porous coated surface in confined and unconfined spaces. Exp. Therm. Fluid Sci. 47, 40–47 (2013)

    Google Scholar 

  22. Suganthi, K.S.; Vinodhan, V.L.; Rajan, K.S.: Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl. Energy 135, 548–559 (2014)

    Google Scholar 

  23. Vemuri, S.; Kim, K.J.: Pool boiling of saturated FC-72 on nano-porous surface. Int. Commun. Heat Mass Transf. 32, 27–31 (2005)

    Google Scholar 

  24. Wu, W.; Bostanci, H.; Chow, L.C.; Hong, Y.; Su, M.; Kizito, J.P.: Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces. Int. J. Heat Mass Transf. 53, 1773–1777 (2010)

    Google Scholar 

  25. Forrest, E.; Williamson, E.; Buongiorno, J.; Hu, L.W.; Rubner, M.; Cohen, R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transf. 53, 58–67 (2010)

    Google Scholar 

  26. Jo, H.; Kim, S.; Kim, H.; Kim, J.; Kim, M.H.: Nucleate boiling performance on nano/ microstructures with different wetting surfaces. Nanoscale Res. Lett. 7, 1–9 (2012)

    Google Scholar 

  27. Im, Y.; Dietz, C.; Lee, S.S.; Joshi, Y.: Flower-like CuO nanostructures for enhanced boiling. Nanosc. Microsc. Therm. 16, 145–153 (2012)

    Google Scholar 

  28. Das, S.; Kumar, D.S.; Bhaumik, S.: Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl. Therm. Eng. 96, 555–567 (2016)

    Google Scholar 

  29. Karunagaran, B.; Rajendra Kumar, R.T.; Kumar, V.S.; Mangalaraj, D.; Narayandass, S.K.; Rao, G.M.: Structural characterization of DC magnetronsputtered TiO2 thin films using XRD and Raman scattering studies. Mater. Sci. Semicond. Process. 6, 547–550 (2003)

    Google Scholar 

  30. Bera, A.; Thapa, R.; Chattopadhyay, K.K.; Saha, B.: In plane conducting channel at the interface of CdO–ZnO isotype thin film heterostructure. J. Alloys Comp. 632, 343–347 (2015)

    Google Scholar 

  31. Saha, B.; Das, N.S.; Chattopadhyay, K.K.: Combined effect of oxygen deficient point defects and Ni doping in radio frequency magnetron sputtering deposited ZnO thin films. Thin Solid Films 562, 37–42 (2014)

    Google Scholar 

  32. Patil, C.M.; Santhanam, K.S.V.; Kandlikar, S.G.: Development of a two-step electrodeposition process for enhancing pool boiling. Int. J. Heat Mass Transf. 79, 989–1001 (2014)

    Google Scholar 

  33. Kadam, A.N.; Dhabbe, R.S.; Kokate, M.R.; Gaikwad, Y.B.; Garadkar, K.M.: Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta Part A 133, 669–676 (2014)

    Google Scholar 

  34. Ishii, A.; Nakamura, Y.; Oikawa, I.; Kamegawa, A.; Takamura, H.: Low-temperature preparation of high-n TiO2 thin film on glass by pulsed laser deposition. Appl. Surf. Sci. 347, 528–534 (2015)

    Google Scholar 

  35. Sujith Kumar, C.S.; Suresh, S.; Yang, Q.; Aneesh, C.R.: An experimental investigation on flow boiling heat transfer enhancement using spray pyrolysed alumina porous coatings. Appl. Therm. Eng. 71, 508–518 (2014)

    Google Scholar 

  36. Shin, H.C.; Dong, J.; Liu, M.: Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1614 (2003)

    Google Scholar 

  37. Kim, J. H.: Enhancement of pool boiling heat transfer using thermally conductive microporous coating techniques (Ph.D. thesis), University of Texas at Arlington, TX, USA (2006)

  38. Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1, 3–17 (1988). https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  39. Nikolic, N.D.: Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range. Zastita Materijala 51, 1970203 (2010)

    Google Scholar 

  40. Wang, Y.; Sefiance, K.: Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. Int. J. Heat Mass Transf. 55, 2235–2243 (2012)

    Google Scholar 

  41. Gupta, S.K.; Misra, R.D.: An experimental investigation on flow boiling heat transfer enhancement using Cu-TiO2 nanocomposite coating on copper substrate. Exp. Therm. Fluid Sci. 98, 406–419 (2018)

    Google Scholar 

  42. Morshed, A.K.M.M.; Paul, T.C.; Khan, J.: Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel. Appl. Therm. Eng. 51, 1135–1143 (2013)

    Google Scholar 

  43. Lenz, P.; Lipowsky, R.: Morphological transitions of wetting layers on structured surfaces. Phys. Rev. Lett. 80, 1920–1923 (1998)

    Google Scholar 

  44. Young Lee, C.; Hossain Bhuiya, M.M.; Kim, K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transf. 53, 4274–4279 (2010)

    Google Scholar 

  45. Zhang, B.J.; Kim, K.J.; Yoon, H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transf. 55, 7487–7498 (2012)

    Google Scholar 

  46. Lee, C.Y.; Zhang, B.J.; Kim, K.J.: Influence of heated surfaces and fluids on pool boiling heat transfer. Exp. Therm. Fluid Sci. 59, 15–23 (2014)

    Google Scholar 

  47. Kandlikar, S.: A theoretical Model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071–1079 (2002)

    Google Scholar 

  48. Hegde, R.N.; Rao, S.S.; Reddy, R.: Experimental investigations of pool boiling heat transfer characteristics on a vertical surface using CuO nanoparticles in distilled water. Heat Transf Eng 35, 14–15 (2014). https://doi.org/10.1080/01457632.2013.876820

    Article  Google Scholar 

  49. Sarafraz, M.M.; Hormozi, F.: Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int. J. Therm. Sci. 100, 255–266 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Misra, R.D. Flow Boiling Performance Analysis of Copper–Titanium Oxide Micro-/Nanostructured Surfaces Developed by Single-Step Forced Convection Electrodeposition Technique. Arab J Sci Eng 46, 12029–12044 (2021). https://doi.org/10.1007/s13369-021-05850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05850-x

Keywords

Navigation