Skip to main content

Advertisement

Log in

Reference Correlation for the Viscosity of 1,1,1,2-Tetrafluoroethane (R-134a) from the Triple Point to 438 K and up to 70 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We present a new wide-ranging correlation for the viscosity of 1,1,1,2-tetrafluoroethane (R-134a) based on critically evaluated experimental data. The correlation is designed to be used with densities from an existing equation of state, which is valid from the triple point to 438 K, at pressures up to 70 MPa. The estimated uncertainty (at the 95 % confidence level) for the viscosity varies depending on the temperature and pressure, from a low of 0.2 % in the dilute-gas range near room temperature, to 2 % along the saturated vapor boundary, 2.5 % for the saturated liquid, and 4 % for some high-pressure regions. The correlation behaves in a physically reasonable manner when extrapolated to pressures above 70 MPa. Comparisons with experimental data at pressures to 400 MPa are given. However, care should be taken when using the correlation outside of the validated range of the equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhang, Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013)

  2. P.A. Domanski, M.O. McLinden, I.H. Bell, G.T. Linteris, NIST Technical Note 2014 (NIST, Gaithersburg, MD, 2018). https://doi.org/10.6028/NIST.TN.2014

    Book  Google Scholar 

  3. M.L. Huber, A. Laesecke, R.A. Perkins, Ind. Eng. Chem. Res. 42, 3163 (2003)

    Article  Google Scholar 

  4. M.L. Huber, F. Ely, Fluid Phase Equilib. 80, 239 (1992)

    Article  Google Scholar 

  5. D.E. Diller, A.A. Aragon, A. Laesecke, Fluid Phase Equilib. 88, 251 (1993)

    Article  Google Scholar 

  6. H. Nabizadeh, F. Mayinger, High Temp. High Press. 24, 221 (1992)

    Google Scholar 

  7. G.Y. Ruvinskij, G.K. Lavrenchenko, S.V. Iljushenko, Kholod. Tekh. 67, 20 (1990)

    Google Scholar 

  8. A. Kumagai, M. Takahashi, Int. J. Thermophys. 12, 105 (1991)

    Article  ADS  Google Scholar 

  9. I.R. Shankland, R.S. Basu, D.P. Wilson, Thermal Conductivity and Viscosity of a New Stratospherically Safe Refrigerant - 1,1,1,2-Tetrafluoroethane (R-134A), in International Refrigeration and Air Conditioning Conference, Paper 41 (1988)

  10. R. Krauss, J. Luettmer-Strathmann, J.V. Sengers, K. Stephan, Int. J. Thermophys. 14, 951 (1993)

    Article  ADS  Google Scholar 

  11. D.C. Dowdell, G.P. Matthews, J. Chem. Soc. Faraday Trans. 89, 3545 (1993)

    Article  Google Scholar 

  12. C.M.B.P. Oliveira, W.A. Wakeham, Int. J. Thermophys. 14, 33 (1993)

    Article  ADS  Google Scholar 

  13. T. Okubo, T. Hasuo, A. Nagashima, Int. J. Thermophys. 13, 931 (1992)

    Article  ADS  Google Scholar 

  14. M. Takahashi, C. Yokoyama, C. Takahashi, in Proceedings of High Pressure Conference (Sendai, Japan, 1989), p. 372

  15. M.J. Assael, Y. Nagasaka, C.A. Nieto de Castro, R.A. Perkins, K. Strӧm, E. Vogel, W.A. Wakeham, Int. J. Thermophys. 16, 63 (1995)

    Article  ADS  Google Scholar 

  16. M.J. Assael, A. Leipertz, E. MacPherson, Y. Nagasaka, C.A. Nieto de Castro, R.A. Perkins, K. Strӧm, E. Vogel, W.A. Wakeham, Int. J. Thermophys. 21, 1 (2000)

    Article  Google Scholar 

  17. S.A. Klein, M.O. McLinden, A. Laesecke, Int. J. Refrig. 20, 208 (1997)

    Article  Google Scholar 

  18. J. Wilhelm, E. Vogel, Fluid Phase Equilib. 125, 257 (1996)

    Article  Google Scholar 

  19. N. Shibasaki-Kitakawa, M. Takahashi, C. Yokoyama, Int. J. Thermophys. 19, 1285 (1998)

    Article  Google Scholar 

  20. P.J. Dunlop, J. Chem. Phys. 100, 3149 (1994)

    Article  ADS  Google Scholar 

  21. M.F. Pasekov, E.E. Ustyuzhanin, Teplofiz. Vys. Temp. 32, 630 (1994)

    Google Scholar 

  22. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10.0. (2018)

  23. G. Scalabrin, P. Marchi, R. Span, J. Phys. Chem. Ref. Data 35, 839 (2006)

    Article  ADS  Google Scholar 

  24. A. Laesecke, S. Bair, Int. J. Thermophys. 32, 925 (2011)

    Article  ADS  Google Scholar 

  25. E. Vogel, E. Bich, Int. J. Thermophys. 42, 153 (2021)

    Article  ADS  Google Scholar 

  26. C.M. Tsolakidou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 46, 023103 (2017)

    Article  ADS  Google Scholar 

  27. M.L. Huber, M.J. Assael, Int. J. Refrig. 71, 45 (2016)

    Article  Google Scholar 

  28. M.J. Assael, T.B. Papalas, M.L. Huber, J. Phys. Chem. Ref. Data 46, 033103 (2017)

    Article  ADS  Google Scholar 

  29. S. Avgeri, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 43, 033103 (2014)

    Article  ADS  Google Scholar 

  30. S. Avgeri, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 44, 033101 (2015)

    Article  ADS  Google Scholar 

  31. E.K. Michailidou, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 42, 033104 (2013)

    Article  ADS  Google Scholar 

  32. E.K. Michailidou, M.J. Assael, M.L. Huber, I. Abdulagatov, R.A. Perkins, J. Phys. Chem. Ref. Data 43, 023103 (2014)

    Article  ADS  Google Scholar 

  33. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 023102 (2018)

    Article  ADS  Google Scholar 

  34. D. Velliadou, K.A. Tasidou, K.D. Antoniadis, M.J. Assael, R.A. Perkins, M.L. Huber, Int. J. Thermophys. 42, 73 (2021)

    Article  ADS  Google Scholar 

  35. M. Mebelli, D. Velliadou, M.J. Assael, M.L. Huber, Int. J. Thermophys. 42, 116 (2021)

    Article  ADS  Google Scholar 

  36. D. Velliadou, K.D. Antoniadis, M.J. Assael, M.L. Huber, Int. J. Thermophys. 43, 42 (2022)

    Article  ADS  Google Scholar 

  37. M.J. Assael, A.E. Kalyva, S.A. Monogenidou, M.L. Huber, R.A. Perkins, D.G. Friend, E.F. May, J. Phys. Chem. Ref. Data 47, 021501 (2018)

    Article  ADS  Google Scholar 

  38. D.G. Friend, J.C. Rainwater, Chem. Phys. Lett. 107, 590 (1984)

    Article  ADS  Google Scholar 

  39. J.C. Rainwater, D.G. Friend, Phys. Rev. A 36, 4062 (1987)

    Article  ADS  Google Scholar 

  40. E. Bich, E. Vogel, Chap. 5.2 in Transport properties of fluids. Their correlation, prediction and estimation (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  41. V. Vesovic, W.A. Wakeham, G.A. Olchowy, J.V. Sengers, J.T.R. Watson, J. Millat, J. Phys. Chem. Ref. Data 19, 763 (1990)

    Article  ADS  Google Scholar 

  42. S. Hendl, J. Millat, E. Vogel, V. Vesovic, W.A. Wakeham, J. Luettmer-Strathmann, J.V. Sengers, M.J. Assael, Int. J. Thermophys. 15, 1 (1994)

    Article  ADS  Google Scholar 

  43. M.J. Alam, A. Miyara, K. Kariya, K.K. Kontomaris, J. Chem. Eng. Data 63, 1706 (2018)

    Article  Google Scholar 

  44. X. Meng, G. Qiu, J. Wu, I.M. Abdulagatov, J. Chem. Thermodyn. 63, 24 (2013)

    Article  Google Scholar 

  45. A. Kumagai, C. Yokoyama, Int. J. Thermophys. 21, 909 (2000)

    Article  Google Scholar 

  46. C.M.B.P. Oliveira, W.A. Wakeham, Int. J. Thermophys. 20, 365 (1999)

    Article  Google Scholar 

  47. M.J. Assael, S.K. Polimatidou, Int. J. Thermophys. 18, 354 (1997)

    ADS  Google Scholar 

  48. A.A.H. Pàdua, J.M.N.A. Fareleira, J.C.G. Calado, W.A. Wakeham, J. Chem. Eng. Data 41, 731 (1996)

    Article  Google Scholar 

  49. R. Heide, Leipzig 23, 225 (1996)

    Google Scholar 

  50. M.J. Assael, J.H. Dymond, S.K. Polimatidou, Int. J. Thermophys. 15, 591 (1994)

    Article  ADS  Google Scholar 

  51. G. Zhao, S. Bi, A.P. Fröba, J. Wu, J. Chem. Eng. Data 59, 1366 (2014)

    Article  Google Scholar 

  52. M.J.P. Comuñas, A. Baylaucq, S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, C. Boned, J. Fernández, Fluid Phase Equilib. 10, 21 (2003)

    Article  Google Scholar 

  53. A.P. Frӧba, S. Will, A. Leipertz, Int. J. Thermophys. 21, 1225 (2000)

    Article  Google Scholar 

  54. A. Laesecke, T.O.D. Luddecke, R.F. Hafer, D.J. Morris, Int. J. Thermophys. 20, 401 (1999)

    Article  Google Scholar 

  55. L.Z. Han, M.S. Zhu, X.Y. Li, D. Luo, J. Chem. Eng. Data 40, 650 (1995)

    Article  Google Scholar 

  56. V.Z. Geller, M.E. Paulaitis, D.B. Bivens, A. Yokozeki, Viscosities for R22 Alternatives and Their Mixtures with a Lubricant Oil, in International Refrigeration and Air Conditioning Conference, Paper 224 (1994)

  57. M. Burke, S. Carrѐ, H. Kruse, Oil Behaviour of the HFCs R32, R125, R134a and one of their mixtures, in CFCs, the day after conference proceedings, Padova, September 21–23 (1994)

  58. D.B. Bivens, A. Yokozeki, V.Z. Geller, M.E. Paulaitis, in Transport properties and heat transfer of alternatives for R-502 and R-22, ASHRAE/NIST Refrigerants Conference, August 19–20, 73–84 (NIST, Gaithersburg, MD, 1993)

  59. D. Ripple, O. Matar, J. Chem. Eng. Data 38, 560 (1993)

    Article  Google Scholar 

  60. O.V. Belyaeva, A.J. Grebenkov, B.D. Timofeev, Measured Viscosity and Speed of Sound in Liquid R-134a, Thermophysical Processes in Refrigeration Systems and Properties of Working Media, 63. (SPTIHP, St Petersburg, 1993)

  61. G.K. Lavrenchenko, G.Y. Ruvinskij, S.V. Iljushenko, V.V. Kanaev, Int. J. Refrig. 15, 386 (1992)

    Article  Google Scholar 

  62. R. Heide, H. Lippold, Proc. Meet. Int. Inst. Refrig. Comm. B2, E2, D1, D2/3, Dresden 4, 237 (1990)

  63. W.A. Wakeham, M.J. Assael, Bulg. Chem. Commun. 51, 9 (2019)

    Google Scholar 

  64. R. Tillner-Roth, H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)

    Article  ADS  Google Scholar 

  65. S.G. Penoncello, R.T. Jacobsen, K.M. de Reuck, A.E. Elhassan, R.C. Williams, E.W. Lemmon, Int. J. Thermophys. 16, 781 (1995)

    Article  ADS  Google Scholar 

  66. I.M. Astina, H. Sato, Fluid Phase Equilib. 221, 103 (2004)

    Article  Google Scholar 

  67. J.W. Magee, Int. J. Refrig. 15, 372 (1992)

    Article  Google Scholar 

  68. E. Vogel, E. Bich, R. Nimz, Physica A 139, 188 (1986)

    Article  ADS  Google Scholar 

  69. Ε Vogel, C. Küchenmeister, Ε Bich, A. Laesecke, J. Phys. Chem. Ref. Data 27, 947 (1998)

    Article  ADS  Google Scholar 

  70. EUREQA Formulize v.098.1 (Nutonian Inc, Cambridge, MA, 2012) - Commercial equipment, instruments, or materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose

  71. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Int. J. Thermophys. 13, 269 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia L. Huber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10765_2022_3029_MOESM1_ESM.txt

Supplementary file A text file containing the parameters for the correlation is available for use with the REFPROP [22] computer program. It must be named R134a.fld. We thank Dr. Eric Lemmon of NIST for assistance developing this file. (TXT 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velliadou, D., Assael, M.J. & Huber, M.L. Reference Correlation for the Viscosity of 1,1,1,2-Tetrafluoroethane (R-134a) from the Triple Point to 438 K and up to 70 MPa. Int J Thermophys 43, 105 (2022). https://doi.org/10.1007/s10765-022-03029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03029-6

Keywords

Navigation