Skip to main content
Log in

Review on viscosity measurement: devices, methods and models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Viscosity is a crucial rheological property essential in predicting the behaviour of any fluid. It is vital to expect the fluid flow trend in various processes. This paper surveys multiple methods to find the viscosity of liquefied metals and different fluids. These methods include capillary, oscillating, rotational, draining vessels, etc. Several models are surveyed that can estimate the viscosity of fluids. The temperature dependency of viscosity is also provided. The paper includes various devices based on different working principles and correlations proposed by multiple authors for determining the viscosity of fluids. The article helps the researchers select the appropriate viscometer, method, and correlation to estimate their research's fluid viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

This is Authors’ original data and has not been taken from anywhere. Also, neither submitted anywhere for publication.

Abbreviations

bf:

Base fluid

EG:

Ethylene glycol

GO:

Graphene oxide

MWCNT:

Multi-walled carbon nanotube

nf:

Hybrid nanofluid/nanofluid

SG:

Specific gravity

A :

Area [m2]

E :

Activation energy [J]

F :

Force [N]

H :

Liquid height [m]

H m :

Hydrostatic head [m]

I :

Moment of inertia [m4]

L :

Length [m]

M 1 and M 2 :

Marking points [dimensionless]

R:

Gas constant [J mole1 K1]

r :

Radius [m]

t :

Oscillation period [s]

T :

Temperature [K]

u :

Velocity [m s1]

V :

Molar volume [m3]

y :

Distance [m]

2πΔ:

Logarithmic decrement [m]

τ :

Shear stress [N m2]

Φ:

Concentration [%]

μ, η :

Viscosity [Pa s]

ρ :

Density [kg m3]

Ψ1 and Ψ2 :

Coefficients

References

  1. White FM. Fluid Mechanics. 8th ed. New York, USA: McGraw-Hill; 2015.

    Google Scholar 

  2. Meek G, Williams R, Thornton D, Knapp P, Cosser S. F2E—ultra high-pressure distributed pump common rail system (No. 2014-01-1440). SAE Technical Paper, 2014.

  3. Shin S, Keum D. Viscosity measurement of non-Newtonian fluid foods with a mass-detecting capillary viscometer. J Food Eng. 2003;58(1):5–10.

    Google Scholar 

  4. Zhang Y, He M, Xue R, Wang X, Zhong Q, Zhang X. A new method for liquid viscosity measurements: inclined-tube viscometry. Int J Thermophys. 2008;29(2):483.

    CAS  Google Scholar 

  5. Camas-Anzueto J, Gómez-Pérez J, Meza-Gordillo R, Anzueto-Sánchez G, Pérez-Patricio M, López-Estrada F, Abud-Archila M, Ríos-Rojas C. Measurement of the viscosity of biodiesel by using an optical viscometer. Flow Meas Instrum. 2017;54:82–7.

    Google Scholar 

  6. Zerkle D, Núñez M, Zucker J. Molten composition B viscosity at elevated temperature. J Energ Mater. 2016;34(4):368–83.

    CAS  Google Scholar 

  7. Mustafaev M. The theory of falling-hollow-cylinder viscometer. High Temp. 2006;44(4):633–6.

    CAS  Google Scholar 

  8. Rowane A, Mallepally R, Bamgbade B, Newkirk M, Baled H, Burgess W, Gamwo I, Tapriyal D, Enick R, McHugh M. Hightemperature, high-pressure viscosities and densities of toluene. J Chem Therm. 2017;115:34–46.

    CAS  Google Scholar 

  9. Lee I, Park K, Lee J. Note: precision viscosity measurement using suspended microchannel resonators. Rev Sci Inst. 2012;83(11):116106.

    CAS  Google Scholar 

  10. Pimentel-Rodas A, Galicia-Luna L, Castro-Arellano J. Capillary viscometer and vibrating tube densimeter for simultaneous measurements up to 70 MPa and 423 K. J Chem Eng Data. 2015;61(1):45–55.

    Google Scholar 

  11. Madan M, Mazumdar D. Computational assessment of viscosity measurement in rotating viscometers through detailed numerical simulation. Met Mater Trans B. 2004;35(4):805–9.

    Google Scholar 

  12. Schumacher K, White J, Downey J. Viscosities in the calcium-silicate slag system in the range of 1798 K to 1973 K (1525 to 1700 °C). Met Mater Trans B. 2015;46(1):119–24.

    CAS  Google Scholar 

  13. Etchart I, Sullivan M, Jundt J, Harrison C, Goodwin A, Hsu K. A comparison of both steady-state resonance and transient decay methods of determining viscosity with a vibrating wire viscometer: results for certified reference fluids for viscosity that are stagnant with viscosity between (2.5 and 66) mPa s and flowing at volumetric flow rates below 50 cm3 s−1 and viscosities less than 34 mPa s. J Chem Eng Data. 2008;53(8):1691–7.

    CAS  Google Scholar 

  14. Glowacz A. Fault diagnosis of single-phase induction motor based on acoustic signals. Mech Syst Signal Proc. 2019;117:65–80.

    Google Scholar 

  15. Glowacz A, Witold G, Zygfryd G, Jaroslaw K. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement. 2018;113:1–9.

    Google Scholar 

  16. Mia M, Gupta K, Singh G, Królczyk G, Pimenov Y. An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod. 2018;187:1069–81.

    CAS  Google Scholar 

  17. Shariq M, Madhulika S, Rupam T, Somnath C, Pedro V, Nenad G, Grzegorz K. Optimisation and characterisation of friction surfaced coatings of ferrous alloys. Mater Test. 2018;60(7–8):707–18.

    CAS  Google Scholar 

  18. Ma J, Huang X, Bae H, Zheng Y, Liu C, Zhao M, Yu M. Liquid viscosity measurement using a vibrating flexure hinged structure and a fibre-optic sensor. IEEE Sens J. 2016;16(13):5249–58.

    CAS  Google Scholar 

  19. Lv P, Yang Z, Hua Z, Li M, Lin M, Dong Z. Measurement of viscosity of liquid in micro-crevice. Flow Meas Instrum. 2015;46:72–9.

    Google Scholar 

  20. Zambrano J, Sobrino M, Martín M, Villamañán M, Chamorro C, Segovia J. Contributing to accurate high-pressure viscosity measurements: vibrating wire viscometer and falling body viscometer techniques. J Chem Therm. 2016;96:104–16.

    CAS  Google Scholar 

  21. Augustine EO, Stephen OE, Ityokumbul IS. Design fabrication and testing of a viscometer for testing viscosity of liquids. Int J Eng Res Technol. 2019;8(5):659–63.

    Google Scholar 

  22. Brooks RF, Dinsdale AT, Quested PN. The measurement of viscosity of alloys—a review of methods, data and models. Meas Sci Technol. 2005;16:354–62.

    CAS  Google Scholar 

  23. Cheng J, Grobner J, Hort N, Kainer KU, Schmid-Fetzer R. Measurement and calculation of the viscosity of metals—a review of the current status and developing trends. Meas Sci Technol. 2014;25:062001. https://doi.org/10.1088/0957-0233/25/6/062001.

    Article  CAS  Google Scholar 

  24. Whorlow RW. Rheological techniques. 2nd ed. New York: Ellis Horwood; 1992.

    Google Scholar 

  25. Walters K. Rheometry. London: Chapman and Hall; 1975.

    Google Scholar 

  26. Dealy JM. Rheometers for molten plastics. New York: Van Nostrand Reinhold; 1982.

    Google Scholar 

  27. Van Wazer JR, Lyons JW, Kim KY, Colwell RE. Viscosity and flow measurement. New York: Interscience; 1963.

    Google Scholar 

  28. Macosko CW. Rheology: principles, measurements, and applications. New York: VCH; 1994.

    Google Scholar 

  29. Wakeham WA, Nagashima A, Sengers JV. Measurement of the transport properties of fluids. Oxford, UK: Blackwell Scientific; 1991.

    Google Scholar 

  30. Clift R, Grace JR, Weber ME. Bubbles, drops, and particles. San Diego: Academic Press; 1978.

    Google Scholar 

  31. Coutanceau M, Thizon P. Wall effect on the bubble behavior in highly viscous liquids. J Fluid Mech. 1981;107:339–73.

    CAS  Google Scholar 

  32. McSkimin HJ. Ultrasonic methods for measuring the mechanical properties of liquids and solids. In: Mason WP, editor. Physical acoustics. New York: Academic Press; 1964. p. 271–334.

    Google Scholar 

  33. Nasch P, Manghnani MH, Secco RA. A modified ultrasonic interferometer for sound velocity measurements in molten metals and alloys. Rev Sci Instrum. 1994;65:682–8.

    CAS  Google Scholar 

  34. Herty CH. Neerungen im Siemens-Martin Betrieb. Stahl u Eisen. 1934;54:609.

    Google Scholar 

  35. Herty CH. Die physikalische chemie der Stahlerzeugung. Stahl u Eisen. 1936;56:165.

    Google Scholar 

  36. Krabiell HJ. Entkohlungsgeschwindigkeit und Sauerstoffgehalt des Stahles im Basichen Siemens-Martin-Ofen. Stahl u Eisen. 1944;64:399.

    CAS  Google Scholar 

  37. Mills KC, Halali M, Lorz HP, Kinder A, Pomfret R, Walker B. A simple test for the measurements of slag viscosity Molten Slags. Fluxes Salts ’97 Conference of Sydney, Australia, 5–8 Jan (1997), Iron and Steel Society p. 535.

  38. Roach SJ, Henein H, Owens DC. A new technique to measure dynamically the surface tension, viscosity and density of molten metals Light Metals. In: Aujier JL Warrendale: TMS; 2001. pp. 1285–91.

  39. Bhattad A, Sarkar J, Ghosh P. Use of hybrid nanofluids in plate heat exchanger for low temperature applications. PhD Thesis, IIT BHU Varanasi, 2019.

  40. Sarala PL, Rao BN. Thermal properties of Al2O3-water nanofluids to examine heat transfer enhancement in heat exchangers. Int J Control Theory Appl. 2017;10(11):87–105.

    Google Scholar 

  41. Anjorin SA, Mebude SO. Design, construction and testing of a viscometer. Int J Eng Trends Technol. 2019;67(6):111–20.

    Google Scholar 

  42. Bie Y, Guo X, Song P, Yang J, Li Z. A novel design of flow structure model for online viscosity measurement. Insight. 2019;61(1):9–14.

    CAS  Google Scholar 

  43. Leblanc GE, Secco RA, Kostic M. Viscosity measurement. CRC Press; 2000.

    Google Scholar 

  44. Da Andrade EN. The theory of the viscosity of liquids. Lond Edinb Dubl Phil Mag J Sci. 1934;17:497.

    CAS  Google Scholar 

  45. Hildebrand JH. Viscosity and diffusivity: a predictive treatment. New York: Wiley; 1977.

    Google Scholar 

  46. Mehrota AK. A generalised viscosity equation for pure heavy hydrocarbons. Ind Eng Chem Res. 1991;30:1367.

    Google Scholar 

  47. Walther C. The evaluation of viscosity data. Erdol Teer. 1931;7:382.

    CAS  Google Scholar 

  48. Chhabra RP, Tripathi A. A correlation for the viscosity of liquid metals high temp. High Press. 1993;25:713.

    CAS  Google Scholar 

  49. Moelwyn-Hughes EA. Physical chemistry. 2nd ed. Oxford: Pergamon; 1961.

    Google Scholar 

  50. Hirai M. Estimation of viscosities of liquid alloys. ISIJ. 2002;33:281–5.

    Google Scholar 

  51. Mills KC. Recommended values of thermophysical properties for selected commercial alloys. Cambridge: Woodhead Publishing Ltd; 2002.

    Google Scholar 

  52. Sichen Du, Bygen J, Seetharaman S. A model for estimation of viscosities of complex metallic and ionic melts. Metall Trans B. 1994;25:519.

    Google Scholar 

  53. Kucharski M. The viscosity of multicomponent systems. Z Met. 1986;77:393–6.

    CAS  Google Scholar 

  54. Kucharski M. A model for predicting the viscosity of multicomponent solutions. Z Met. 1988;79:264–6.

    CAS  Google Scholar 

  55. Roscoe R. Viscosity determination by the oscillating vessel method: I theoretical considerations. Proc Phys Soc. 1958;72:576–84.

    CAS  Google Scholar 

  56. Brockner W, Torklep K, Oye HA. Viscosity of aluminium chloride and acidic sodium chloroaluminate melts. Ber Bursenges Phys Chem. 1979;83:1–11.

    CAS  Google Scholar 

  57. Babar H, Sajid MU, Ali HM. Viscosity of hybrid nanofluids a critical review. Therm Sci. 2019;23(3B):1713–54.

    Google Scholar 

  58. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005.

    Article  Google Scholar 

  59. Nguyen CT, Desgranges F, Galanis N, Roy G, Mare T, Boucher S, Mintsa HA. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47(2):103–11.

    CAS  Google Scholar 

  60. Yu W, Xie H, Chen L, Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta. 2009;491(1–2):92–6.

    CAS  Google Scholar 

  61. Ho CJ, Huang JB, Tsai PS, Yang YM. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf. 2010;37:490–4.

    CAS  Google Scholar 

  62. Baghbanzadeh M, et al. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.

    CAS  Google Scholar 

  63. Abbasi S, Zebarjad SM, Baghban SHN, Youssefi A, Ekrami-Kakhki MS. Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids. J Therm Anal Calorim. 2016;123(1):81–9.

    CAS  Google Scholar 

  64. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    CAS  Google Scholar 

  65. Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Google Scholar 

  66. Dardan E, Afrand M, Meghdadi-Isfahani AH. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    CAS  Google Scholar 

  67. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Phys E Low-Dimens Syst Nanostruct. 2016;84:564–70.

    CAS  Google Scholar 

  68. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO-engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transf. 2016;76:41–5.

    CAS  Google Scholar 

  69. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp. 2011;388(1–3):41–8.

    CAS  Google Scholar 

  70. Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50(6):3071–7.

    CAS  Google Scholar 

  71. Yarmand H, et al. Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.

    CAS  Google Scholar 

  72. Sundar LS, Ramana EV, Graça MPF, Singh MK, Sousa ACM. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transf. 2016;73:62–74.

    CAS  Google Scholar 

  73. Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Google Scholar 

  74. Esfe MH, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Google Scholar 

  75. Sheikholeslami M, Shamlooei M. Magnetic source influence on nanofluid flow in porous medium considering shape factor effect. Phys Lett A. 2017;381:3071–8.

    CAS  Google Scholar 

  76. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    CAS  Google Scholar 

  77. Asadi A, Asadi M, Rezaei M, Siahmargoi M, Asadi F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: An experimental study. Int Commun Heat Mass Transf. 2016;78:48–53.

    CAS  Google Scholar 

  78. Shahsavar A, et al. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52(10):2293–301.

    CAS  Google Scholar 

  79. Sundar LS, et al. Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-CO3O4) nanocomposite. Case Stud Therm Eng. 2016;7:66–77.

    Google Scholar 

  80. Afrand M, et al. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4-Ag/Eg hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    CAS  Google Scholar 

  81. Yarmand H, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21.

    CAS  Google Scholar 

  82. Kumar MS, et al. Thermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluids. J Taiwan Inst Chem Eng. 2016;66:321–7.

    CAS  Google Scholar 

  83. Yarmand H, et al. Nanofluid based on activated hybrid of biomass carbon/graphene oxide: synthesis, thermo-physical and electrical properties. Int Commun Heat Mass Transf. 2016;72:10–5.

    CAS  Google Scholar 

  84. Ahammed N, et al. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97.

    CAS  Google Scholar 

  85. Kumar V, et al. Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy. 2016;114:1107–19.

    CAS  Google Scholar 

  86. Syam SL, et al. Experimental investigation of the thermal transport properties of graphene oxide/CO3O4 hybrid nanofluids. Int Commun Heat Mass Transf. 2017;84:1–10.

    Google Scholar 

  87. Nabil MF, et al. An experimental study on the thermal conductivity and dynamic viscosity of TiO2–SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transf. 2017;86:181–9.

    CAS  Google Scholar 

  88. Esfe HM, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-CO3O4/Eg (40:60) aqueous nanofluid using NSGA-II coupled with RSM. J Mol Liq. 2017;238:545–52.

    Google Scholar 

  89. Mechiri SK, et al. Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Exp Heat Transf. 2017;30(3):205–17.

    CAS  Google Scholar 

  90. Akilu S, et al. Experimental measurements of thermal conductivity and viscosity of ethylene glycolbased hybrid nanofluid with TiO2–CuO/C inclusions. J Mol Liq. 2017;246:396–405.

    CAS  Google Scholar 

  91. Tahat MS, Benim AC. Experimental analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector. Defect Diffus Forum. 2017;374:148–56.

    Google Scholar 

  92. Nabil MF, et al. Heat transfer and friction factor of composite TiO2-SiO2 nanofluids in water-ethylene glycol (60:40) mixture. IOP Conf Ser Mater Sci Eng. 2017;257:012066.

    Google Scholar 

  93. Hussien AA, et al. Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube. Int J Heat Mass Transf. 2017;115:1121–31.

    CAS  Google Scholar 

  94. Asadi A, et al. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    CAS  Google Scholar 

  95. Esfe HM, et al. Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10W40 hybrid nano-lubricant for lubrication purposes. J Mol Liq. 2018;249:677–87.

    Google Scholar 

  96. Ahmadi NA, et al. Measuring the viscosity of Fe3O4-MWCNTs/Eg hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behaviour. J Mol Liq. 2018;253:169–77.

    Google Scholar 

  97. Motahari K, et al. Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO2(20–80)/20W50 hybrid nanolubricant. Chin J Chem Eng. 2018;26:137–43.

    Google Scholar 

  98. Hamid KA, et al. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52.

    CAS  Google Scholar 

  99. Asadi A, et al. An experimental and theoretical investigation on heat transfer capability of Mg(OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid. Appl Therm Eng. 2018;129:577–86.

    CAS  Google Scholar 

  100. Sharma S, et al. Viscosity of hybrid nanofluids: measurement and comparison. J Mech Eng Sci. 2018;12(2):2289–4659.

    Google Scholar 

  101. Dalkilic AS, et al. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int Commun Heat Mass Transf. 2018;97:30–8.

    CAS  Google Scholar 

  102. Afshari A, et al. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%): new correlation and margin of deviation. J Therm Anal Calorim. 2018;132(2):1001–15.

    CAS  Google Scholar 

  103. Ghasemi S, Karimipour A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng. 2018;128:189–97.

    CAS  Google Scholar 

  104. Akilu S, et al. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol Energy Mater Sol Cells. 2018;179:118–28.

    CAS  Google Scholar 

Download references

Funding

Author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AB has done all the necessary work required. There is no contribution of anyone in this regard.

Corresponding author

Correspondence to Atul Bhattad.

Ethics declarations

Conflict of interest

As this manuscript contains single author, there is no conflict of interest between author and any other person. The manuscript has not been previously published, is not currently submitted for review to any other journal, and will not be submitted elsewhere.

Consent to participate

Not applicable.

Consent for publication

Author is ready to publish work in this journal.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattad, A. Review on viscosity measurement: devices, methods and models. J Therm Anal Calorim 148, 6527–6543 (2023). https://doi.org/10.1007/s10973-023-12214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12214-0

Keywords

Navigation