Skip to main content
Log in

The transport properties of ethane. I. Viscosity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new representation of the viscosity of ethane is presented. The representative equations are based upon a body of experimental data that have been critically assessed for internal consistency and for agreement with theory in the zero-density limit, vapor phase, and critical region. The representation extends over the temperature range from 100 K to the critical temperature in the liquid phase and from 200 K to the critical temperature in the vapor phase. In the supercritical region, the temperature range extends to 1000 K for pressures up to 2 MPa and to 500 K for pressures up to 60 MPa. The ascribed accuracy of the representation varies according to the thermodynamic state from ±0.5 % for the viscosity of the dilute gas near room temperature to ±3.0% for the viscosity at high pressures and temperatures. Tables of the viscosity, generated by the relevant equations, at selected temperatures and pressures and along the saturation line, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham,Chem. Por. 78:16.1 (1978).

    Google Scholar 

  2. V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat,J. Phys. Chem. Ref. Data 19:763 (1990).

    Google Scholar 

  3. I. F. Golubev,The Viscosity of Gases and Gas Mixtures (Israel Program for Scientific Translations, Jerusalem, 1970).

    Google Scholar 

  4. T. Makita, Y. Tanaka, and A. Nagashima,Rev. Phys. Chem. (Jap.) 44:98 (1974).

    Google Scholar 

  5. H. J. M. Hanley, K. E. Gubbins, and S. Murad,J. Phys. Chem. Ref. Data 6:1167 (1977).

    Google Scholar 

  6. A. A. Tarzimanov, V. E. Lyusternik, and V. A. Arslanov,Viscosity of Gaseous Hedrocarbons, a Survey of Thermophysical Properties of Compounds, No. 1 (63) (Institute of High Temperatures, Moscow, 1987).

    Google Scholar 

  7. B. A. Younglove and J. F. Ely,J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  8. D. G. Friend, H. Ingham, and J. F. Ely,J. Phys. Chem. Ref. Data 20:275 (1991).

    Google Scholar 

  9. I. Hunter and E. B. Smith, personal communication (1989).

  10. S. Hendl and E. Vogel,Fluid Phase Equil. 76:259 (1992).

    Google Scholar 

  11. E. Bich and E. Vogel,Int. J. Thermophys. 12:27 (1991).

    Google Scholar 

  12. J. Luettmer-Strathmann, S. Tang, and J. V. Sengers,J. Chem. Phys. 97:2705 (1992).

    Google Scholar 

  13. V. Vesovic and W. A. Wakeham, inCritical Fluid Technology, T. J. Bruno and J. F. Ely, eds. (CRC Press, Boca Raton, FL, 1991), Chap. 6.

    Google Scholar 

  14. R. Mostert, H. R. van den Berg, P. S. van der Gulik, and J. V. Sengers,J. Chem. Phys. 92:5454 (1990).

    Google Scholar 

  15. H. Vogel,Amt. Phys. 43:1235 (1914).

    Google Scholar 

  16. Y. Ishida,Phys. Rev. 21:550 (1923).

    Google Scholar 

  17. G. Martin,A Treatise on Chemical Engineering (Lockwood and Son, London, 1928).

    Google Scholar 

  18. T. Titani,Bull. Client. Soc. (Jap.) 5:98 (1930).

    Google Scholar 

  19. M. Trautz and K. G. Sorg,Ann. Phys. 10:81 (1931).

    Google Scholar 

  20. N. S. Rudenko and L. W. Schubnikow,Phys. Z. Sowjetunion 6:470 (1934) [data quoted by A. Van Itterbeek and O. van Paemel,Physica 8:133 (1941)].

    Google Scholar 

  21. H. Adzumi,Bull. Chem. Soc. (Jap.) 12:199 (1937).

    Google Scholar 

  22. S. F. Gerf and G. I. Galkov,Zhur. Tekh. Fiz. 10:725 (1940).

    Google Scholar 

  23. G. I. Galkov and S. F. Gerf,Zhur. Tekh. Fiz. 11:613 (1941).

    Google Scholar 

  24. S. F. Gerf and G. I. Galkov,Zhur. Tekh. Fiz. 11:801 (1941).

    Google Scholar 

  25. A. S. Smith and G. G. Brown,Ind. Eng. Chem. 35:705 (1943).

    Google Scholar 

  26. V. D. Majmudar and V. S. Oka,J. Univ. Bombay 17A:35 (1949).

    Google Scholar 

  27. P. M. Craven and J. D. Lambert,Proc. Rov. Soc. (London) 205A:439 (1951).

    Google Scholar 

  28. H. Senftleben,Z. Angew. Phys. 5:33 (1953).

    Google Scholar 

  29. N. V. Meshcheryakov and I. F. Golubev,Trudy GIAP 4:22 (1954).

    Google Scholar 

  30. J. D. Lambert, K. J. Cotton, M. W. Pailthorpe, A. M. Robinson, J. Scrivins, W. R. F. Vale, and R. M. Young,Proc. Roy. Soc. (London) 231A:280 (1955).

    Google Scholar 

  31. A. G. DeRocco and J. O. Halford,J. Chem. Phys. 28:1152 (1958).

    Google Scholar 

  32. J. D. Baron, J. G. Roof, and F. W. Wells,J. Chem. Eng. Data 4:283 (1959).

    Google Scholar 

  33. G. W. Swift, J. Lohrenz, and F. Kurata,AIChE J. 6:415 (1960).

    Google Scholar 

  34. K. E. Starling, B. E. Eakin, J. P. Dolan, and R. T. Ellington,Proc. 2nd Symp. Thermophys. Prop., P. F. Masi and D. H. Tsai, eds. (American Society of Mechanical Engineers, New York, 1962), p. 530.

    Google Scholar 

  35. B. E. Eakin, K. E. Starling, J. P. Dolan, and R. T. Ellington,J. Chem. Eng. Data 7:33 (1962); ADI Document No. 6856.

    Google Scholar 

  36. L. T. Carmichael and B. H. Sage,J. Chem. Eng. Data 8:94 (1963).

    Google Scholar 

  37. J. Kestin, S. T. Ro, and W. A. Wakeham,Trans. Faraday Soc. 67:2308 (1971).

    Google Scholar 

  38. H. J. Strumpf, A. F. Collings, and C. J. Pings,J. Chem. Phys. 60:3109 (1974).

    Google Scholar 

  39. M. Diaz Pena and J. A. R. Cheda,Anales Quint. (Espana) 71:34 (1975).

    Google Scholar 

  40. A. Cabello, F. Pedrosa, and M. Diaz Pena,Anales Quint. (Espana) 73:37 (1977).

    Google Scholar 

  41. J. Kestin, H. E. Khalifa, and W. A. Wakeham,J. Chem. Phys. 66:1132 (1977).

    Google Scholar 

  42. Y. Abe, J. Kestin, H. E. Khalifa, and W. A. Wakeham,Physica 93A:155 (1978).

    Google Scholar 

  43. H. Iwasaki and M. Takahashi,J. Chem. Phys. 74:1930 (1981).

    Google Scholar 

  44. D. E. Diller and J. M. Saber,Physica 108A:143 (1981).

    Google Scholar 

  45. D. E. Diller,Proc. 8th Symp. Thermophys. Prop., J. V. Sengers, ed. (American Society of Mechanical Engineers, New York, 1982), Vol. I, p. 219.

    Google Scholar 

  46. D. E. Diller and J. F. Ely,High Temp. High Press. 21:613 (1989).

    Google Scholar 

  47. R. D. Trengove and W. A. Wakeham,J. Phys. Chem. Ref. Data 16:175 (1987).

    Google Scholar 

  48. J. Millat, V. Vesovic, and W. A. Wakeham,Int. J. Thermophys. 12:265 (1991).

    Google Scholar 

  49. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham,Intermolecular Forces: Their Origin and Determination (Clarendon Press, Oxford, 1987).

    Google Scholar 

  50. S. Hendl, J. Millat, V. Vesovic, E. Vogel, and W. A. Wakeham,Int. J. Thermophys. 12:999 (1991).

    Google Scholar 

  51. CODATA Bulletin No. 63 (1986).

  52. E. Bich, J. Millat, and E. Vogel,Wiss. Z. W.-Pieck-Univ. Rostock 36(N8):5 (1987).

    Google Scholar 

  53. A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason,J. Phys. Chem. Ref. Data 16:445 (1987);17:255 (1988).

    Google Scholar 

  54. J. V. Sengers,Int. J. Thermophys. 6:203 (1985).

    Article  Google Scholar 

  55. S. L. Rivkin, A. Ya. Levin, L. B. Izrailevsky, and K. G. Kharitonov,Proc. 8th Int. Coral. Prop. Steam, P. Bury, H. Perdon, and B. Vodar, eds. (Editions Européennes Thermiques et Industries, Paris, 1975), p. 153.

    Google Scholar 

  56. R. S. Basu, J. V. Sengers, and J. T. R. Watson,Int. J. Thermophys. 1:33 (1980).

    Google Scholar 

  57. V. N. Zozulya and Y. P. Blagoi,Soc. Phys. JETP 39:99 (1974).

    Google Scholar 

  58. R. F. Berg and M. R. Moldover,Phys. Rev. A42:7183 (1990)

    Google Scholar 

  59. R. F. Berg and M. R. Moldover,J. Chem. Phys. 93:1926 (1990).

    Google Scholar 

  60. G. A. Olchowy and J. V. Sengers,Phys. Rev. Lett. 61:15 (1988).

    Google Scholar 

  61. R. Kraus, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan,Int. J. Thermophys. 14:951 (1993).

    Google Scholar 

  62. R. F. Berg and M. R. Moldover,J. Chem. Phys. 89:3694 (1988).

    Google Scholar 

  63. J. C. Nieuwoudt and J. V. Sengers,J. Chem. Phys. 92:5454 (1990).

    Google Scholar 

  64. H. Hao and R. A. Ferrell, in press.

  65. D. G. Friend,J. Chem. Phys. 79:4533 (1983).

    Google Scholar 

  66. J. C. Rainwater,J. Chem. Phys. 81:495 (1984).

    Google Scholar 

  67. D. G. Friend and J. C. Rainwater,Chem. Phys. Lett. 107:590 (1984).

    Google Scholar 

  68. J. C. Rainwater and D. G. Friend,Phys. Rev. A36:4062 (1987).

    Google Scholar 

  69. M. Takahashi, C. Yokoyama, and S. Takahashi,Kagaku Kogaku Ronbunshu 11:155 (1985).

    Google Scholar 

  70. M. Takahashi, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Data 32:98 (1987).

    Google Scholar 

  71. E. Vogel and S. Hendl,Fluid Phase Equil. 79:313 (1992).

    Google Scholar 

  72. H. J. M. Hanley, R. D. McCarty, and E. G. D. Cohen,Physica 60:322 (1972).

    Google Scholar 

  73. D. E. Diller and M. J. Ball,Int. J. Thermophys. 6:619 (1985).

    Google Scholar 

  74. K. M. de Reuck and B. Armstrong,Cryogenics 19:505 (1979).

    Google Scholar 

  75. M. J. Assael, E. Charitidou, J. H. Dymond, and M. Papadaki,Int. J. Thermophys. 13:237 (1992).

    Google Scholar 

  76. V. Vesovic, W. A. Wakeham, J. Luettmer-Strathmann, J. V. Sengers, J. Millat, E. Vogel, and M. J. Assael,Int. J. Thermophys. 15:33 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendl, S., Millat, J., Vogel, E. et al. The transport properties of ethane. I. Viscosity. Int J Thermophys 15, 1–31 (1994). https://doi.org/10.1007/BF01439245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01439245

Key Words

Navigation