Skip to main content
Log in

Lifetime Measurement of Excitons in Si by Terahertz Time-domain Spectroscopy with High Spectral Resolution

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We have developed an optical pump and terahertz (THz) probe spectroscopy scheme to study the photoexcited dynamics in solids ranging from sub-microsecond to a millisecond regime. We applied the developed scheme to measure the lifetime of long-lived indirect excitons in Si through the observation of intra-exciton transitions, resolving the fine structure of excitons with high spectral resolution in a spectral range from 0.5 to 7 THz (2 to 29 meV). We also performed the lifetime measurement of the lowest energy spin-forbidden dark excitons under the magnetic field. Through the observation of intra-exciton transitions, otherwise inaccessible spin-forbidden dark excitons were directly probed by the THz time-domain spectroscopy. By comparing with the photoluminescence spectroscopy, we revealed that the lowest energy dark excitons are accumulated in the crystal, whereas the recombination dynamics is governed by the nonradiative decay process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. For a recent review, see e.g., R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).

    Google Scholar 

  2. J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).

    Article  Google Scholar 

  3. T. Suzuki and R. Shimano, Phys. Rev. Lett. 103, 057401 (2009).

    Article  Google Scholar 

  4. T. Suzuki and R. Shimano, Phys. Rev. B 83, 085207 (2011).

    Article  Google Scholar 

  5. T. Suzuki and R. Shimano, Phys. Rev. Lett. 109, 046402 (2012).

    Article  Google Scholar 

  6. Q. Wu and X. C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).

    Article  Google Scholar 

  7. M. Tajima, Appl. Phys. Lett., 32, 719 (1978).

    Article  Google Scholar 

  8. T. Nishino, M. Takeda , and Y. Hamakawa, Sol. Stat. Commun. 12, 1137 (1973).

    Article  Google Scholar 

  9. N. O. Lipari and M. Altarelli, Phys. Rev. B 15, 4883 (1977).

    Article  Google Scholar 

  10. D. Labrie, M. L. W. Thewalt, I. J. Booth, and G. Kirczenow, Phys. Rev. Lett. 61, 1882 (1988).

    Article  Google Scholar 

  11. T. Timusk and H. Navarro, Sol. Stat. Commun. 25, 217 (1978).

    Article  Google Scholar 

  12. M. A. Tamor and J. P. Wolfe, Phys. Rev. Lett. 44, 1703 (1980).

    Article  Google Scholar 

  13. R. B. Hammond and R. N. Silver, Appl. Phys. Lett. 36, 68 (1980).

    Article  Google Scholar 

  14. A. Haug, Sol. Stat. Commun. 25, 477 (1978).

    Article  Google Scholar 

  15. P. L. Gourley and J. P. Wolfe, Phys. Rev. B 24, 5970 (1981).

    Article  Google Scholar 

  16. Ya. Pokrovskii, phys. stat. sol. (a) 11, 385 (1972).

  17. R. M. Westervelt, Phys. Status Solidi (b) 76, 31 (1976).

    Article  Google Scholar 

  18. H. Navarro, H. G. Zarate and T. Timusk, Sol. Stat. Commun. 25, 1045 (1978).

    Article  Google Scholar 

  19. R. B. Hammond, D. L. Smith, and T. C. McGill, Phys. Rev. Lett. 35, 1535 (1975).

    Google Scholar 

  20. G. Feher, Phys. Rev. 114, 1219 (1959).

    Article  Google Scholar 

  21. P. Lawartz, Phys. Rev. B 4, 3460 (1971).

    Article  Google Scholar 

  22. N. O. Lipari and A. Baldereschi, Phys. Rev. B 3, 2497 (1971).

    Article  Google Scholar 

  23. A. A. Konchits, I. M. Zaritskii, and D. B. Shanina, Pis’ma Zh. Eksp. Teor. Fiz. 29, 713 (1979) [JETP Lett. 29, 655 (1979)].

    Google Scholar 

  24. J.Y. Yoo, T. Suzuki, and R. Shimano, IRMMW-THz 2011 IEEE Conference Proceedings (2011) doi:10.1109/irmmw-THz.2011.6104862

  25. T. Ohyama, Phys. Rev. B 23, 5445 (1981).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Gran-in-Aid for Scientific Research (Grants No. 22244036, No. 23104705, and No. 20110005) and by the Photon Frontier Network Program from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shimano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, J.Y., Shimano, R. Lifetime Measurement of Excitons in Si by Terahertz Time-domain Spectroscopy with High Spectral Resolution. J Infrared Milli Terahz Waves 35, 110–117 (2014). https://doi.org/10.1007/s10762-013-0032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0032-1

Keywords

Navigation