Skip to main content
Log in

Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Exciton physics in atomically thin transition-metal dichalcogenides (TMDCs) holds paramount importance for fundamental physics research and prospective applications. However, the experimental exploration of exciton physics, including excitonic coherence dynamics, exciton many-body interactions, and their optical properties, faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects. In this perspective, we elaborate upon how optical two-dimensional coherent spectroscopy (2DCS) emerges as an effective tool to tackle the challenges, and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Castellanos-Gomez, Why all the fuss about 2D semiconductors, Nat. Photonics 10(4), 202 (2016)

    Article  ADS  Google Scholar 

  2. G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90(2), 021001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. W. P. Aue, E. Bartholdi, and R. R. Ernst, Two dimensional spectroscopy. Application to nuclear magnetic resonance, J. Chem. Phys. 64(5), 2229 (1976)

    Article  ADS  Google Scholar 

  4. Y. Tanimura and S. Mukamel, Two-dimenoional femtosecond vibrational spectroscopy of liquids, J. Chem. Phys. 99(12), 9496 (1993)

    Article  ADS  Google Scholar 

  5. S. T. Cundiff and S. Mukamel, Optical multidimensional coherent spectroscopy, Phys. Today 66(7), 44 (2013)

    Article  Google Scholar 

  6. P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three dimensional structure, Proc. Natl. Acad. Sci. USA 96(5), 2036 (1999)

    Article  ADS  Google Scholar 

  7. O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy, Phys. Rev. Lett. 86(10), 2154 (2001)

    Article  ADS  Google Scholar 

  8. F. D. Fuller and J. P. Ogilvie, Experimental implementations of two-dimensional Fourier transform electronic spectroscopy, Annu. Rev. Phys. Chem. 66(1), 667 (2015)

    Article  ADS  Google Scholar 

  9. M. Cho, Coherent Multidimensional Spectroscopy, Springer, 2019

  10. H. Li, B. Lomsadze, G. Moody, C. Smallwood, and S. T. Cundiff, Optical Multidimensional Coherent Spectroscopy, Oxford University Press, 2023

  11. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Two-dimensional spectroscopy of electronic couplings in photosynthesis, Nature 434(7033), 625 (2005)

    Article  ADS  Google Scholar 

  12. E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, and G. D. Scholes, Coherently wired light harvesting in photosynthetic marine algae at ambient temperature, Nature 463(7281), 644 (2010)

    Article  ADS  Google Scholar 

  13. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science 301(5640), 1698 (2003)

    Article  ADS  Google Scholar 

  14. B. Dereka, Q. Yu, N. H. C. Lewis, W. B. Carpenter, J. M. Bowman, and A. Tokmakoff, Crossover from hydrogen to chemical bonding, Science 371(6525), 160 (2021)

    Article  ADS  Google Scholar 

  15. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, Two-dimensional doublequantum spectra reveal collective resonances in an atomic vapor, Phys. Rev. Lett. 108(19), 193201 (2012)

    Article  ADS  Google Scholar 

  16. S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor, Opt. Lett. 44(11), 2795 (2019)

    Article  ADS  Google Scholar 

  17. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells, Science 324(5931), 1169 (2009)

    Article  ADS  Google Scholar 

  18. J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy, Nat. Commun. 8(1), 376 (2017)

    Article  ADS  Google Scholar 

  19. J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, and M. D. Fayer, Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two dimensional infrared spectroscopy, J. Am. Chem. Soc. 140(31), 9882 (2018)

    Article  Google Scholar 

  20. G. Moody, C. Kavir Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)

    Article  ADS  Google Scholar 

  21. L. Guo, C. A. Chen, Z. Zhang, D. M. Monahan, Y. H. Lee, and G. R. Fleming, Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy, Nanoscale Adv. 2(6), 2333 (2020)

    Article  ADS  Google Scholar 

  22. T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, and J. Kasprzak, Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy, Nano Lett. 16(9), 5333 (2016)

    Article  ADS  Google Scholar 

  23. T. Jakubczyk, K. Nogajewski, M. R. Molas, M. Bartos, W. Langbein, M. Potemski, and J. Kasprzak, Impact of environment on dynamics of exciton complexes in a WS2 monolayer, 2D Mater. 5, 031007 (2018)

    Article  Google Scholar 

  24. C. Boule, D. Vaclavkova, M. Bartos, K. Nogajewski, L. Zdražil, T. Taniguchi, K. Watanabe, M. Potemski, and J. Kasprzak, Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit, Phys. Rev. Mater. 4(3), 034001 (2020)

    Article  Google Scholar 

  25. T. L. Purz, E. W. Martin, W. G. Holtzmann, P. Rivera, A. Alfrey, K. M. Bates, H. Deng, X. Xu, and S. T. Cundiff, Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156(21), 214704 (2022)

    Article  ADS  Google Scholar 

  26. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)

    Article  ADS  Google Scholar 

  27. Z. Ye, D. Sun, and T. F. Heinz, Optical manipulation of valley pseudospin, Nat. Phys. 13(1), 26 (2017)

    Article  Google Scholar 

  28. K. Hao, G. Moody, F. Wu, C. K. Dass, L. Xu, C. H. Chen, L. Sun, M. Y. Li, L. J. Li, A. H. MacDonald, and X. Li, Direct measurement of exciton valley coherence in monolayer WSe2, Nat. Phys. 12(7), 677 (2016)

    Article  Google Scholar 

  29. M. Titze, B. Li, X. Zhang, P. M. Ajayan, and H. Li, Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy, Phys. Rev. Mater. 2(5), 054001 (2018)

    Article  Google Scholar 

  30. K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, and X. Li, Trion valley coherence in monolayer semiconductors, 2D Mater. 4, 025105 (2017)

    Article  Google Scholar 

  31. J. B. Muir, J. Levinsen, S. K. Earl, M. A. Conway, J. H. Cole, M. Wurdack, R. Mishra, D. J. Ing, E. Estrecho, Y. Lu, D. K. Efimkin, J. O. Tollerud, E. A. Ostrovskaya, M. M. Parish, and J. A. Davis, Interactions between Fermi polarons in monolayer WS2, Nat. Commun. 13(1), 6164 (2022)

    Article  ADS  Google Scholar 

  32. D. Huang, K. Sampson, Y. Ni, Z. Liu, D. Liang, K. Watanabe, T. Taniguchi, H. Li, E. Martin, J. Levinsen, M. M. Parish, E. Tutuc, D. K. Efimkin, and X. Li, Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer, Phys. Rev. X 33(1), 011029 (2023)

    Google Scholar 

  33. S. Helmrich, K. Sampson, D. Huang, M. Selig, K. Hao, K. Tran, A. Achstein, C. Young, A. Knorr, E. Malic, U. Woggon, N. Owschimikow, and X. Li, Phonon-assisted intervalley scattering determines ultrafast exciton dynamics in MoSe2 bilayers, Phys. Rev. Lett. 127(15), 157403 (2021)

    Article  ADS  Google Scholar 

  34. D. Li, C. Trovatello, S. Dal Conte, M. Nuß, G. Soavi, G. Wang, A. C. Ferrari, G. Cerullo, and T. Brixner, Exciton-phonon coupling strength in single-layer MoSe2 at room temperature, Nat. Commun. 12(1), 954 (2021)

    Article  ADS  Google Scholar 

  35. D. Li, H. Shan, C. Rupprecht, H. Knopf, K. Watanabe, T. Taniguchi, Y. Qin, S. Tongay, M. Nuß, S. Schröder, F. Eilenberger, S. Höfling, C. Schneider, and T. Brixner, Hybridized exciton-photon-phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity, Phys. Rev. Lett. 128(8), 087401 (2022)

    Article  ADS  Google Scholar 

  36. L. Guo, M. Wu, T. Cao, D. M. Monahan, Y. H. Lee, S. G. Louie, and G. R. Fleming, Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides, Nat. Phys. 15(3), 228 (2019)

    Article  Google Scholar 

  37. L. T. Lloyd, R. E. Wood, F. Mujid, S. Sohoni, K. L. Ji, P. C. Ting, J. S. Higgins, J. Park, and G. S. Engel, Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy, ACS Nano 15(6), 10253 (2021)

    Article  Google Scholar 

  38. V. Mapara, A. Barua, V. Turkowski, M. T. Trinh, C. Stevens, H. Liu, F. A. Nugera, N. Kapuruge, H. R. Gutierrez, F. Liu, X. Zhu, D. Semenov, S. A. McGill, N. Pradhan, D. J. Hilton, and D. Karaiskaj, Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields, Nano Lett. 22(4), 1680 (2022)

    Article  ADS  Google Scholar 

  39. A. Singh, G. Moody, S. Wu, Y. Wu, N. J. Ghimire, J. Yan, D. G. Mandrus, X. Xu, and X. Li, Coherent electronic coupling in atomically thin MoSe2, Phys. Rev. Lett. 112(21), 216804 (2014)

    Article  ADS  Google Scholar 

  40. K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2, Nano Lett. 16(8), 5109 (2016)

    Article  ADS  Google Scholar 

  41. A. Rodek, T. Hahn, J. Howarth, T. Taniguchi, K. Watanabe, M. Potemski, P. Kossacki, D. Wigger, and J. Kasprzak, Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer, 2D Mater. 10, 025027 (2023)

    Article  Google Scholar 

  42. R. Tempelaar and T. C. Berkelbach, Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides, Nat. Commun. 10(1), 3419 (2019)

    Article  ADS  Google Scholar 

  43. K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, Neutral and charged intervalley biexcitons in monolayer MoSe2, Nat. Commun. 8(1), 15552 (2017)

    Article  ADS  Google Scholar 

  44. R. E. Wood, L. T. Lloyd, F. Mujid, L. Wang, M. A. Allodi, H. Gao, R. Mazuski, P. C. Ting, S. Xie, J. Park, and G. S. Engel, Evidence for the dominance of carrier-induced band gap renormalization over biexciton formation in cryogenic ultrafast experiments on MoS2 monolayers, J. Phys. Chem. Lett. 11(7), 2658 (2020)

    Article  Google Scholar 

  45. M. A. Conway, J. B. Muir, S. K. Earl, M. Wurdack, R. Mishra, J. O. Tollerud, and J. A. Davis, Direct measurement of biexcitons in monolayer WS2, 2D Mater. 9, 021001 (2022)

    Article  Google Scholar 

  46. C. Mai, A. Barrette, Y. Yu, Y. G. Semenov, K. W. Kim, L. Cao, and K. Gundogdu, Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2, Nano Lett. 14(1), 202 (2014)

    Article  ADS  Google Scholar 

  47. I. Kylänpää and H. P. Komsa, Binding energies of exciton-complexes in transition metal dichalcogenide monolayers and effect of dielectric environment, Phys. Rev. B 92(20), 205418 (2015)

    Article  ADS  Google Scholar 

  48. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, Coherent two-dimensional nanoscopy, Science 333(6050), 1723 (2011)

    Article  ADS  Google Scholar 

  49. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)

    Article  Google Scholar 

  50. T. L. Purz, E. W. Martin, P. Rivera, W. G. Holtzmann, X. Xu, and S. T. Cundiff, Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure, Phys. Rev. B 104(24), L241302 (2021)

    Article  ADS  Google Scholar 

  51. V. R. Policht, M. Russo, F. Liu, C. Trovatello, M. Maiuri, Y. Bai, X. Zhu, S. Dal Conte, and G. Cerullo, Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy, Nano Lett. 21(11), 4738 (2021)

    Article  ADS  Google Scholar 

  52. D. Huang, J. Choi, C. K. Shih, and X. Li, Excitons in semiconductor moiré superlattices, Nat. Nanotechnol. 17(3), 227 (2022)

    Article  ADS  Google Scholar 

  53. K. F. Mak and J. Shan, Semiconductor moiré materials, Nat. Nanotechnol. 17(7), 686 (2022)

    Article  ADS  Google Scholar 

  54. C. E. Stevens, J. Paul, T. Cox, P. K. Sahoo, H. R. Gutiérrez, V. Turkowski, D. Semenov, S. A. McGill, M. D. Kapetanakis, I. E. Perakis, D. J. Hilton, and D. Karaiskaj, Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields, Nat. Commun. 9(1), 3720 (2018)

    Article  ADS  Google Scholar 

  55. V. Mapara, C. E. Stevens, J. Paul, A. Barua, J. L. Reno, S. A. McGill, D. J. Hilton, and D. Karaiskaj, Multidimensional spectroscopy of magneto-excitons at high magnetic fields, J. Chem. Phys. 155(20), 204201 (2021)

    Article  ADS  Google Scholar 

  56. S. I. Azzam, K. Parto, and G. Moody, Prospects and challenges of quantum emitters in 2D materials, Appl. Phys. Lett. 118(24), 240502 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Xiaoqin Li for her valuable discussions. S. Y. and X. L. acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 12121004 and 12004391), the China Postdoctoral Science Foundation (Grants Nos. 2020T130682 and 2019M662752), the Science and Technology Department of Hubei Province (Grant No. 2020CFA029), and the Knowledge Innovation Program of Wuhan-Shuguang Project. T. J. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 62175188 and 62005198) and the Shanghai Science and Technology Innovation Action Plan Project (Grant No. 23ZR1465800). X. C. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 61925504, 62020106009, and 6201101335), Science and Technology Commission of Shanghai Municipality (Grant Nos. 17JC1400800, 20JC1414600, and 21JC1406100), and the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone (Grant No. ZJ2021-ZD-008). D. H. acknowledges the support from the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShaoGang Yu or Di Huang.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, S., Jiang, T. et al. Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides. Front. Phys. 19, 23301 (2024). https://doi.org/10.1007/s11467-023-1345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1345-8

Keywords

Navigation