Skip to main content

Advertisement

Log in

Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammatory disorders result from continuous inflammation in injured sites. Many molecules are involved in this process; the inhibition of which could prevent the inflammation. Chemokines are a group of these biological mediators which are categorized into pro-, anti-, and pro-/anti-inflammatory. Thus, targeting these essential molecules can be an effective way for prevention and control of inflammatory diseases. Various therapeutic agents have been developed for primary and secondary prevention of these disorders, but each of them has its own limitations. Aptamers, as novel therapeutic agents, are a new generation of drugs which could replace other medications even antibodies. Aptamer can bind to its target molecule to trap it and prohibit its function. Among large group of inflammatory cytokines, only 11 aptamers have been selected either against cytokines or their related receptors. These cytokines include interleukin (IL)-2, IL-6, IL-10, IL-11, IL-17, IL-32, TGF-β, TNF-α, IFN-γ, CCL2, and IP-10. Most of the isolated aptamers are against pro-inflammatory or dual function cytokines, and it seems that they could be used for diagnosis, prevention, and treatment of the related inflammatory diseases. Most of the aptamers have been tested in vitro, but so far, none of them has been approved for in vivo use. Given a vast number of inflammatory cytokines, more aptamers against this group of biological molecules will be selected in the near future. The available aptamers will also be tested in clinical trials. Therefore, a significant improvement is expected for the prevention and control of inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nathan, C. 2002. Points of control in inflammation. Nature 420: 846–852.

    Article  CAS  PubMed  Google Scholar 

  2. Cavaillon, J.M. 2001. Pro- versus anti-inflammatory cytokines: Myth or reality. Cellular and Molecular Biology (Noisy-le-Grand, France) 47: 695–702.

    CAS  Google Scholar 

  3. Dinarello, C. 2000. Impact of basic research on tomorrow’s medicine. Chest 118: 503–508.

    Article  CAS  PubMed  Google Scholar 

  4. Casey, G. 2013. Acute rheumatic fever: The danger for our children. Nursing New Zealand 19: 20–24.

    Google Scholar 

  5. Song, K., S. Lee, and C. Ban. 2012. Aptamers and their biological applications. Sensors 12: 612–631.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tuerk, C., and L. Gold. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York NY) 249: 505–510.

    Article  CAS  Google Scholar 

  7. Ellington, A.D., and J.W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

    Article  CAS  PubMed  Google Scholar 

  8. Lai, J.C., and C.Y. Hong. 2014. Magnetic-assisted rapid aptamer selection (MARAS) for generating high-affinity DNA aptamer using rotating magnetic fields. ACS Combinatorial Science 16: 321–327.

    CAS  PubMed  Google Scholar 

  9. Lee, J.H., F. Jucker, and A. Pardi. 2008. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen. FEBS letters 582: 1835–1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang, W., G.P. Geba, T. Zheng, P. Ray, R.J. Homer, C. Kuhn 3rd, et al. 1996. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. The Journal of Clinical Investigation 98: 2845–2853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Q., D.T. Fisher, K.A. Clancy, J.M. Gauguet, W.C. Wang, E. Unger, et al. 2006. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nature Immunology 7: 1299–1308.

    Article  CAS  PubMed  Google Scholar 

  12. Barton, B.E. 1997. IL-6: Insights into novel biological activities. Clinical Immunology and Immunopathology 85: 16–20.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta, S., M. Hirota, S.M. Waugh, I. Murakami, T. Suzuki, M. Muraguchi, et al. 2014. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. The Journal of Biological Chemistry 289: 8706–8719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirota, M., I. Murakami, Y. Ishikawa, T. Suzuki, S. Sumida, S. Ibaragi, et al. 2016. Chemically modified interleukin-6 aptamer inhibits development of collagen-induced arthritis in cynomolgus monkeys. Nucleic Acid Therapeutics 26: 10–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kishimoto, T. 2010. IL-6: From its discovery to clinical applications. International Immunology 22: 347–352.

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, C., K. Eydeler, E. Magbanua, T. Zivkovic, N. Piganeau, I. Lorenzen, et al. 2012. Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biology 9: 67–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meyer, C., K. Berg, K. Eydeler-Haeder, I. Lorenzen, J. Grotzinger, S. Rose-John, et al. 2014. Stabilized interleukin-6 receptor binding RNA aptamers. RNA Biology 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  18. Maier, R., V. Ganu, and M. Lotz. 1993. Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases. The Journal of Biological Chemistry 268: 21527–21532.

    CAS  PubMed  Google Scholar 

  19. Suen, Y., M. Chang, S.M. Lee, J.S. Buzby, and M.S. Cairo. 1994. Regulation of interleukin-11 protein and mRNA expression in neonatal and adult fibroblasts and endothelial cells. Blood 84: 4125–4134.

    CAS  PubMed  Google Scholar 

  20. Elias, J.A., W. Tang, and M.C. Horowitz. 1995. Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology 136: 489–498.

    CAS  PubMed  Google Scholar 

  21. Du, X.X., and D.A. Williams. 1994. Interleukin-11: A multifunctional growth factor derived from the hematopoietic microenvironment. Blood 83: 2023–2030.

    CAS  PubMed  Google Scholar 

  22. Yin, T.G., P. Schendel, and Y.C. Yang. 1992. Enhancement of in vitro and in vivo antigen-specific antibody responses by interleukin 11. The Journal of Experimental Medicine 175: 211–216.

    Article  CAS  PubMed  Google Scholar 

  23. Wong, P.K., I.K. Campbell, L. Robb, and I.P. Wicks. 2005. Endogenous IL-11 is pro-inflammatory in acute methylated bovine serum albumin/interleukin-1-induced (mBSA/IL-1)arthritis. Cytokine 29: 72–76.

    Article  CAS  PubMed  Google Scholar 

  24. Putoczki, T., and M. Ernst. 2010. More than a sidekick: The IL-6 family cytokine IL-11 links inflammation to cancer. Journal of Leukocyte Biology 88: 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  25. Ellis, M., U. Hedstrom, C. Frampton, H. Alizadeh, J. Kristensen, F.V. Shammas, et al. 2006. Modulation of the systemic inflammatory response by recombinant human interleukin-11: A prospective randomized placebo controlled clinical study in patients with hematological malignancy. Clinical immunology (Orlando Fla. 120: 129–137.

    Article  CAS  Google Scholar 

  26. Auphan, N., J.A. DiDonato, C. Rosette, A. Helmberg, and M. Karin. 1995. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science (New York NY) 270: 286–290.

    Article  CAS  Google Scholar 

  27. Wong, P.K., I.K. Campbell, P.J. Egan, M. Ernst, and I.P. Wicks. 2003. The role of the interleukin-6 family of cytokines in inflammatory arthritis and bone turnover. Arthritis and Rheumatism 48: 1177–1189.

    Article  CAS  PubMed  Google Scholar 

  28. Arap, W., M.G. Kolonin, M. Trepel, J. Lahdenranta, M. Cardo-Vila, R.J. Giordano, et al. 2002. Steps toward mapping the human vasculature by phage display. Nature Medicine 8: 121–127.

    Article  CAS  PubMed  Google Scholar 

  29. Popa, C., M.G. Netea, P.L. van Riel, J.W. van der Meer, and A.F. Stalenhoef. 2007. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal of Lipid Research 48: 751–762.

    Article  CAS  PubMed  Google Scholar 

  30. Bradley, J.R. 2008. TNF-mediated inflammatory disease. The Journal of Pathology 214: 149–160.

    Article  CAS  PubMed  Google Scholar 

  31. Aggarwal, B.B. 2003. Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews 3: 745–756.

    CAS  PubMed  Google Scholar 

  32. Orava, E.W., N. Jarvik, Y.L. Shek, S.S. Sidhu, and J. Gariepy. 2013. A short DNA aptamer that recognizes TNFalpha and blocks its activity in vitro. ACS Chemical Biology 8: 170–178.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y., Q. Zhou, and A. Revzin. 2013. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. The Analyst 138: 4321–4326.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, J., M.S. Lee, J.A. Copland 3rd, B.A. Luxon, and D.G. Gorenstein. 2008. Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-beta1 protein. Bioorganic & Medicinal Chemistry Letters 18: 1835–1839.

    Article  CAS  Google Scholar 

  35. Li, M.O., and R.A. Flavell. 2008. TGF-beta: A master of all T cell trades. Cell 134: 392–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, M.O., Y.Y. Wan, S. Sanjabi, A.K. Robertson, and R.A. Flavell. 2006. Transforming growth factor-beta regulation of immune responses. Annual Review of Immunology 24: 99–146.

    Article  CAS  PubMed  Google Scholar 

  37. McCartney-Francis, N.L., and S.M. Wahl. 1994. Transforming growth factor beta: A matter of life and death. Journal of Leukocyte Biology 55: 401–409.

    CAS  PubMed  Google Scholar 

  38. Dardalhon, V., A. Awasthi, H. Kwon, G. Galileos, W. Gao, R.A. Sobel, et al. 2008. IL-4 inhibits TGF-beta-induced Foxp3+ T cells, and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nature Immunology 9: 1347–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veldhoen, M., C. Uyttenhove, J. van Snick, H. Helmby, A. Westendorf, J. Buer, et al. 2008. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunology 9: 1341–1346.

    Article  CAS  PubMed  Google Scholar 

  40. Filippi, C.M., A.E. Juedes, J.E. Oldham, E. Ling, L. Togher, Y. Peng, et al. 2008. Transforming growth factor-beta suppresses the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes 57: 2684–2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou, L., J.E. Lopes, M.M. Chong, I.I. Ivanov, R. Min, G.D. Victora, et al. 2008. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453: 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korn, T., E. Bettelli, M. Oukka, and V.K. Kuchroo. 2009. IL-17 and Th17 cells. Annual Review of Immunology 27: 485–517.

    Article  CAS  PubMed  Google Scholar 

  43. Sanjabi, S., L.A. Zenewicz, M. Kamanaka, and R.A. Flavell. 2009. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Current Opinion in Pharmacology 9: 447–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Derynck, R., and Y.E. Zhang. 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  45. Pestka, S., C.D. Krause, and M.R. Walter. 2004. Interferons, interferon-like cytokines, and their receptors. Immunological Reviews 202: 8–32.

    Article  CAS  PubMed  Google Scholar 

  46. Seder, R.A., R. Gazzinelli, A. Sher, and W.E. Paul. 1993. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proceedings of the National Academy of Sciences of the United States of America 90: 10188–10192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tam, S., B. Huey, Y. Li, G.M. Lui, D.G. Hwang, M. Lantz, et al. 1994. Suppression of interferon-gamma induction of MHC class II and ICAM-1 by a 26-base oligonucleotide composed of deoxyguanosine and deoxythymidine. Transplant Immunology 2: 285–292.

    Article  CAS  PubMed  Google Scholar 

  48. Su, D.L., Z.M. Lu, M.N. Shen, X. Li, and L.Y. Sun. 2012. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. Journal of Biomedicine & Biotechnology 2012: 347141.

    Article  CAS  Google Scholar 

  49. Dinarello, C.A. 2000. Proinflammatory cytokines. Chest 118: 503–508.

    Article  CAS  PubMed  Google Scholar 

  50. Gottenberg, J.E., and G. Chiocchia. 2007. Dendritic cells and interferon-mediated autoimmunity. Biochimie 89: 856–871.

    Article  CAS  PubMed  Google Scholar 

  51. Ramanathan, M., M. Lantz, R.D. MacGregor, B. Huey, S. Tam, Y. Li, et al. 1994. Inhibition of interferon-gamma-induced major histocompatibility complex class I expression by certain oligodeoxynucleotides. Transplantation 57: 612–615.

    Article  CAS  PubMed  Google Scholar 

  52. Lee, P.P., M. Ramanathan, C.A. Hunt, and M.R. Garovoy. 1996. An oligonucleotide blocks interferon-gamma signal transduction. Transplantation 62: 1297–1301.

    Article  CAS  PubMed  Google Scholar 

  53. Tuleuova N, Jones CN, Yan J, Ramanculov E, Yokobayashi Y, Revzin A. Development of an aptamer beacon for detection of interferon-gamma. Analytical chemistry.82:1851–1857.

  54. Cao, B., Y. Hu, J. Duan, J. Ma, D. Xu, and X.D. Yang. 2014. Selection of a novel DNA aptamer for assay of intracellular interferon-gamma. PloS One 9, e98214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jin, W., and C. Dong. 2013. IL-17 cytokines in immunity and inflammation. Emerging Microbes & Infections 2, e60.

    Article  CAS  Google Scholar 

  56. Waite, J.C., and D. Skokos. 2012. Th17 response and inflammatory autoimmune diseases. International Journal of Inflammation 2012: 819467.

    Article  PubMed  CAS  Google Scholar 

  57. Ho, A.W., and S.L. Gaffen. 2010. IL-17RC: A partner in IL-17 signaling and beyond. Seminars in Immunopathology 32: 33–42.

    Article  CAS  PubMed  Google Scholar 

  58. Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467–476.

    Article  CAS  PubMed  Google Scholar 

  59. Ishiguro, A., T. Akiyama, H. Adachi, J. Inoue, and Y. Nakamura. 2011. Therapeutic potential of anti-interleukin-17A aptamer: suppression of interleukin-17A signaling and attenuation of autoimmunity in two mouse models. Arthritis and Rheumatism 63: 455–466.

    Article  CAS  PubMed  Google Scholar 

  60. Cheon S, Lee JH, Park S, Bang SI, Lee WJ, Yoon DY, et al. Overexpression of IL-32alpha increases natural killer cell-mediated killing through up-regulation of Fas and UL16-binding protein 2 (ULBP2) expression in human chronic myeloid leukemia cells. The Journal of biological chemistry.286:12049–12055.

  61. Huang F, Wachi S, Li H, Jung SS, August A. IL-32B is the predominant isoform expressed under inflammatory conditions in vitro and in COPD. COPD Research and Practice. 2015;1.

  62. Kim, S.H., S.Y. Han, T. Azam, D.Y. Yoon, and C.A. Dinarello. 2005. Interleukin-32: A cytokine and inducer of TNFalpha. Immunity 22: 131–142.

    CAS  PubMed  Google Scholar 

  63. Kobayashi, H., and P.C. Lin. 2009. Molecular characterization of IL-32 in human endothelial cells. Cytokine 46: 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Netea, M.G., T. Azam, G. Ferwerda, S.E. Girardin, M. Walsh, J.S. Park, et al. 2005. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America 102: 16309–16314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, S., J.H. Kim, S. Yoon, K.S. Kim, M.Y. Yoon, D.Y. Yoon, et al. 2010. Generation of antagonistic RNA aptamers specific to proinflammatory cytokine interleukin-32. Antagonistic RNA Aptamers Specific to Interleukin 31: 3561–3566.

    CAS  Google Scholar 

  66. Dinarello, C.A., and S.H. Kim. 2006. IL-32, a novel cytokine with a possible role in disease. Annals of the Rheumatic Diseases 65(Suppl 3): iii61–64.

    PubMed  PubMed Central  Google Scholar 

  67. Bombardieri, M., I.B. McInnes, and C. Pitzalis. 2007. Interleukin-18 as a potential therapeutic target in chronic autoimmune/inflammatory conditions. Expert Opinion on Biological Therapy 7: 31–40.

    Article  CAS  PubMed  Google Scholar 

  68. Choi, J., S. Bae, J. Hong, S. Ryoo, H. Jhun, K. Hong, et al. 2010. Paradoxical effects of constitutive human IL-32{gamma} in transgenic mice during experimental colitis. Proceedings of the National Academy of Sciences of the United States of America 107: 21082–21086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Netea, M.G., E.C. Lewis, T. Azam, L.A. Joosten, J. Jaekal, S.Y. Bae, et al. 2008. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proceedings of the National Academy of Sciences of the United States of America 105: 3515–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jung, M.Y., M.H. Son, S.H. Kim, D. Cho, and T.S. Kim. 2011. IL-32gamma induces the maturation of dendritic cells with Th1- and Th17-polarizing ability through enhanced IL-12 and IL-6 production. Journal of Immunology 186: 6848–6859.

    Article  CAS  Google Scholar 

  71. Dahl, C.A., R.P. Schall, H.L. He, and J.S. Cairns. 1992. Identification of a novel gene expressed in activated natural killer cells and T cells. Journal of Immunology 148: 597–603.

    CAS  Google Scholar 

  72. Rollins, B.J. 1997. Chemokines. Blood 90: 909–928.

    CAS  PubMed  Google Scholar 

  73. Van Coillie, E., J. Van Damme, and G. Opdenakker. 1999. The MCP/eotaxin subfamily of CC chemokines. Cytokine & Growth Factor Reviews 10: 61–86.

    Article  Google Scholar 

  74. Yoshimura, T., N. Yuhki, S.K. Moore, E. Appella, M.I. Lerman, and E.J. Leonard. 1989. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Letters 244: 487–493.

    Article  CAS  PubMed  Google Scholar 

  75. Matsushima, K., C.G. Larsen, G.C. DuBois, and J.J. Oppenheim. 1989. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. The Journal of Experimental Medicine 169: 1485–1490.

    Article  CAS  PubMed  Google Scholar 

  76. Armstrong, E.J., D.A. Morrow, and M.S. Sabatine. 2006. Inflammatory biomarkers in acute coronary syndromes: Part I: Introduction and cytokines. Circulation 113: e72–75.

    Article  PubMed  Google Scholar 

  77. Yoshimura T, Ueda A. Monocyte chemoattractant protein-1. In Human Cytokines: Handbook for Basic and Clinical Research, II.B. B. Aggarwal and J. U. Gutterman, eds. Blackwell Science, Cambridge. 1996:198–221.

  78. Carr, M.W., S.J. Roth, E. Luther, S.S. Rose, and T.A. Springer. 1994. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proceedings of the National Academy of Sciences of the United States of America 91: 3652–3656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Siveke, J.T., and A. Hamann. 1998. T helper 1 and T helper 2 cells respond differentially to chemokines. Journal of Immunology 160: 550–554.

    CAS  Google Scholar 

  80. Maghazachi, A.A., A. al-Aoukaty, and T.J. Schall. 1994. C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. Journal of Immunology 153: 4969–4977.

    CAS  Google Scholar 

  81. Allavena, P., G. Bianchi, D. Zhou, J. van Damme, P. Jilek, S. Sozzani, et al. 1994. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. European Journal of Immunology 24: 3233–3236.

    Article  CAS  PubMed  Google Scholar 

  82. Kunkel, S.L. 1999. Through the looking glass: the diverse in vivo activities of chemokines. The Journal of Clinical Investigation 104: 1333–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luster, A.D. 1998. Chemokines—chemotactic cytokines that mediate inflammation. The New England Journal of Medicine 338: 436–445.

    Article  CAS  PubMed  Google Scholar 

  84. Luster, A.D., and J.V. Ravetch. 1987. Genomic characterization of a gamma-interferon-inducible gene (IP-10) and identification of an interferon-inducible hypersensitive site. Molecular and Cellular Biology 7: 3723–3731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Charo, I.F., and M.B. Taubman. 2004. Chemokines in the pathogenesis of vascular disease. Circulation Research 95: 858–866.

    Article  CAS  PubMed  Google Scholar 

  86. Weber, C., A. Schober, and A. Zernecke. 2004. Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 1997–2008.

    Article  CAS  PubMed  Google Scholar 

  87. Nelken, N.A., S.R. Coughlin, D. Gordon, and J.N. Wilcox. 1991. Monocyte chemoattractant protein-1 in human atheromatous plaques. The Journal of Clinical Investigation 88: 1121–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yla-Herttuala, S., B.A. Lipton, M.E. Rosenfeld, T. Sarkioja, T. Yoshimura, E.J. Leonard, et al. 1991. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proceedings of the National Academy of Sciences of the United States of America 88: 5252–5256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kulkarni, O., R.D. Pawar, W. Purschke, D. Eulberg, N. Selve, K. Buchner, et al. 2007. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. Journal of the American Society of Nephrology 18: 2350–2358.

    Article  CAS  PubMed  Google Scholar 

  90. Luster, A.D., R. Alon, and U.H. von Andrian. 2005. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology 6: 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  91. Hassanshahi, G., A. Jafarzadeh, Z. Ghorashi, N. Zia Sheikholeslami, and A.J. Dickson. 2007. Expression of IP-10 chemokine is regulated by pro-inflammatory cytokines in cultured hepatocytes. Iranian Journal of Allergy, Asthma, and Immunology 6: 115–121.

    CAS  PubMed  Google Scholar 

  92. Luster, A.D., and J.V. Ravetch. 1987. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). The Journal of Experimental Medicine 166: 1084–1097.

    Article  CAS  PubMed  Google Scholar 

  93. Ohmori, Y., and T.A. Hamilton. 1990. A macrophage LPS-inducible early gene encodes the murine homologue of IP-10. Biochemical and Biophysical Research Communications 168: 1261–1267.

    Article  CAS  PubMed  Google Scholar 

  94. Mach, F., A. Sauty, A.S. Iarossi, G.K. Sukhova, K. Neote, P. Libby, et al. 1999. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. The Journal of Clinical Investigation 104: 1041–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farber, J.M. 1993. HuMig: a new human member of the chemokine family of cytokines. Biochemical and Biophysical Research Communications 192: 223–230.

    Article  CAS  PubMed  Google Scholar 

  96. Cole, K.E., C.A. Strick, T.J. Paradis, K.T. Ogborne, M. Loetscher, R.P. Gladue, et al. 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. The Journal of Experimental Medicine 187: 2009–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dufour, J.H., M. Dziejman, M.T. Liu, J.H. Leung, T.E. Lane, and A.D. Luster. 2002. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. Journal of Immunology 168: 3195–3204.

    Article  CAS  Google Scholar 

  98. Loetscher, P., M. Uguccioni, L. Bordoli, M. Baggiolini, B. Moser, C. Chizzolini, et al. 1998. CCR5 is characteristic of Th1 lymphocytes. Nature 391: 344–345.

    Article  CAS  PubMed  Google Scholar 

  99. Qin, S., J.B. Rottman, P. Myers, N. Kassam, M. Weinblatt, M. Loetscher, et al. 1998. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. The Journal of Clinical Investigation 101: 746–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marro, M.L., D.A. Daniels, A. McNamee, D.P. Andrew, T.D. Chapman, M.S. Jiang, et al. 2005. Identification of potent and selective RNA antagonists of the IFN-gamma-inducible CXCL10 chemokine. Biochemistry 44: 8449–8460.

    Article  CAS  PubMed  Google Scholar 

  101. Howard, M., and A. O’Garra. 1992. Biological properties of interleukin 10. Immunology Today 13: 198–200.

    Article  CAS  PubMed  Google Scholar 

  102. Opal, S.M., J.C. Wherry, and P. Grint. 1998. Interleukin-10: Potential benefits and possible risks in clinical infectious diseases. Clinical Infectious Diseases 27: 1497–1507.

    Article  CAS  PubMed  Google Scholar 

  103. Clarke, C.J., A. Hales, A. Hunt, and B.M. Foxwell. 1998. IL-10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. European Journal of Immunology 28: 1719–1726.

    Article  CAS  PubMed  Google Scholar 

  104. Gerard, C., C. Bruyns, A. Marchant, D. Abramowicz, P. Vandenabeele, A. Delvaux, et al. 1993. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. The Journal of Experimental Medicine 177: 547–550.

    Article  CAS  PubMed  Google Scholar 

  105. Marchant, A., C. Bruyns, P. Vandenabeele, M. Ducarme, C. Gerard, A. Delvaux, et al. 1994. Interleukin-10 controls interferon-gamma and tumor necrosis factor production during experimental endotoxemia. European Journal of Immunology 24: 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  106. Oft M. IL-10: Master switch from tumor-promoting inflammation to antitumor immunity. Cancer immunology research.2:194–199.

  107. Dickensheets, H.L., S.L. Freeman, M.F. Smith, and R.P. Donnelly. 1997. Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxin-stimulated human monocytes. Blood 90: 4162–4171.

    CAS  PubMed  Google Scholar 

  108. Joyce, D.A., D.P. Gibbons, P. Green, J.H. Steer, M. Feldmann, and F.M. Brennan. 1994. Two inhibitors of pro-inflammatory cytokine release, interleukin-10 and interleukin-4, have contrasting effects on release of soluble p75 tumor necrosis factor receptor by cultured monocytes. European Journal of Immunology 24: 2699–2705.

    Article  CAS  PubMed  Google Scholar 

  109. Murray, P.J. 2005. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proceedings of the National Academy of Sciences of the United States of America 102: 8686–8691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Berezhnoy, A., C.A. Stewart, J.O. McNamara 2nd, W. Thiel, P. Giangrande, G. Trinchieri, et al. 2012. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Molecular Therapy 20: 1242–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tuleuova, N., C.N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin. 2010. Development of an aptamer beacon for detection of interferon-gamma. Analytical Chemistry 82: 1851–1857.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thanks Miss Ilnaz Rahimmmanesh and Miss Leila Darzi who helped us in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khanahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boshtam, M., Asgary, S., Kouhpayeh, S. et al. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 40, 340–349 (2017). https://doi.org/10.1007/s10753-016-0477-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0477-1

KEY WORDS

Navigation