Skip to main content

Advertisement

Log in

Chronic Granulomatous Disease: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Chronic granulomatous disease (CGD) is a primary immunodeficiency of phagocyte function due to defective NADPH oxidase (phox). Compared with the common types of CYBB/gp91phox, NCF1/p47phox, and CYBA/p22phox deficiency, NCF4/p40phox deficiency is a mild and atypical form of CGD without invasive bacterial or fungal infections. It can be diagnosed using serum-opsonized E.coli as a stimulus in dihydrorhodamine (DHR) assay. Patients with CYBC1/Eros deficiency, a new and rare form of CGD, present as loss of respiratory burst and gp91phox expression in phagocytes. Neutrophils from patients with CGD are deficient in neutrophil extracellular traps (NETosis), autophagy, and apoptosis. The hyper-activation of NF-ĸB and inflammasome in CGD phagocytes also lead to long-lasting production of pro-inflammatory cytokines and inflammatory manifestations, such as granuloma formation and inflammatory bowel disease-like colitis. Patients with CGD and X-linked female carriers also have a higher incidence of autoimmune diseases. The implementation of antimicrobial, anti-fungal, and interferon-γ prophylaxis has greatly improved overall survival. Residual NADPH oxidase activity is significantly associated with disease severity and the chance of survival of the patient. New therapeutic approaches using immunomodulators for CGD-related inflammatory manifestations are under investigation, including pioglitazone, tamoxifen, and rapamycin. Hematopoietic stem cell transplantation (HSCT) is the curative treatment. Outcomes of HSCT have improved substantially over the last decade with overall survival more than 84–90%, but there are debates about designing optimal conditioning protocols using myeloablative or reduced-intensity regimens. The gene therapy for X-linked CGD using hematopoietic stem and progenitor cells transduced ex vivo by lentiviral vector encoding the human gp91phox gene demonstrated persistence of adequate oxidase-positive neutrophils in a small number of patients. Gene therapy using genome-editing technology such as CRISPR/Cas9 nucleases is a promising approach for patients with CGD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood: the clinical, pathological, and laboratory features of a new syndrome. JAMA Pediatr 97(4):387–408

    CAS  Google Scholar 

  2. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL et al (2020) Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol (ePub)

  3. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79(3):155–169

    Article  CAS  Google Scholar 

  4. Rider NL, Jameson MB, Creech CB (2018) Chronic granulomatous disease: epidemiology, pathophysiology, and genetic basis of disease. J pediatric infect dis Soc 7 (suppl_1):S2-S5

  5. Wolach B, Gavrieli R, de Boer M, van Leeuwen K, Berger-Achituv S, Stauber T, Ben Ari J, Rottem M, Schlesinger Y, Grisaru-Soen G, Abuzaitoun O, Marcus N, Zion Garty B, Broides A, Levy J, Stepansky P, Etzioni A, Somech R, Roos D (2017) Chronic granulomatous disease: clinical, functional, molecular, and genetic studies. The Israeli experience with 84 patients. Am J Hematol 92(1):28–36

    Article  CAS  PubMed  Google Scholar 

  6. Thomas DC, Charbonnier LM, Schejtman A, Aldhekri H, Coomber EL, Dufficy ER, Beenken AE, Lee JC, Clare S, Speak AO, Thrasher AJ, Santilli G, al-Mousa H, Alkuraya FS, Chatila TA, Smith KGC (2019) EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol 143(2):782–785 e781

    Article  CAS  PubMed  Google Scholar 

  7. Thomas DC, Clare S, Sowerby JM, Pardo M, Juss JK, Goulding DA, van der Weyden L, Storisteanu D, Prakash A, Espéli M, Flint S, Lee JC, Hoenderdos K, Kane L, Harcourt K, Mukhopadhyay S, Umrania Y, Antrobus R, Nathan JA, Adams DJ, Bateman A, Choudhary JS, Lyons PA, Condliffe AM, Chilvers ER, Dougan G, Smith KGC (2017) Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med 214(4):1111–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49(12):1834–1845

    Article  CAS  PubMed  Google Scholar 

  9. Dahlgren C, Karlsson A, Bylund J (2019) Intracellular neutrophil oxidants: from laboratory curiosity to clinical reality. J Immunol 202(11):3127–3134

    Article  CAS  PubMed  Google Scholar 

  10. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma A, McCann K, Tripathi JK, Chauhan P, Zerbe C, Mishra BB, Holland SM et al (2019) Tamoxifen restores extracellular trap formation in neutrophils from patients with chronic granulomatous disease in a reactive oxygen species-independent manner. J allergy Clin Immunol 144 (2):597-600.e593

  12. Trevelin SC, Shah AM, Lombardi G (2020) Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol Lett 221:39–48

    Article  CAS  PubMed  Google Scholar 

  13. van de Veerdonk FL, Smeekens SP, Joosten LA, Kullberg BJ, Dinarello CA, van der Meer JW, Netea MG (2010) Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A 107(7):3030–3033

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A (2010) Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116(9):1570–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas DC (2018) How the phagocyte NADPH oxidase regulates innate immunity. Free Radic Biol Med 125:44–52

    Article  CAS  PubMed  Google Scholar 

  16. Deffert C, Carnesecchi S, Yuan H, Rougemont AL, Kelkka T, Holmdahl R, Krause KH, Schäppi MG (2012) Hyperinflammation of chronic granulomatous disease is abolished by NOX2 reconstitution in macrophages and dendritic cells. J Pathol 228(3):341–350

    Article  CAS  PubMed  Google Scholar 

  17. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79(3):170–200

    Article  CAS  Google Scholar 

  18. Kuhns DB, Hsu AP, Sun D, Lau K, Fink D, Griffith P, Huang DW, Priel DAL, Mendez L, Kreuzburg S, Zerbe CS, de Ravin SS, Malech HL, Holland SM, Wu X, Gallin JI (2019) NCF1 (p47(phox))-deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood Adv 3(2):136–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, Scheible R, Rusch S, Gasteiger LM, Grimbacher B, Mahlaoui N, Ehl S, Abinun M, Albert M, Cohen SB, Bustamante J, Cant A, Casanova JL, Chapel H, de Saint Basile G, de Vries E, Dokal I, Donadieu J, Durandy A, Edgar D, Espanol T, Etzioni A, Fischer A, Gaspar B, Gatti R, Gennery A, Grigoriadou S, Holland S, Janka G, Kanariou M, Klein C, Lachmann H, Lilic D, Manson A, Martinez N, Meyts I, Moes N, Moshous D, Neven B, Ochs H, Picard C, Renner E, Rieux-Laucat F, Seger R, Soresina A, Stoppa-Lyonnet D, Thon V, Thrasher A, van de Veerdonk F, Villa A, Weemaes C, Warnatz K, Wolska B, Zhang SY (2019) The European Society for Immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract 7(6):1763–1770

    Article  PubMed  Google Scholar 

  20. Ochs HD, Igo RP (1973) The NBT slide test: a simple screening method for detecting chronic granulomatous disease and female carriers. J Pediatr 83(1):77–82

    Article  CAS  PubMed  Google Scholar 

  21. Yu JE, Azar AE, Chong HJ, Jongco AM, 3rd, Prince BT (2018) Considerations in the diagnosis of chronic granulomatous disease. J pediatric infect dis Soc 7 (suppl_1):S6-S11

  22. Roos D, de Boer M (2014) Molecular diagnosis of chronic granulomatous disease. Clin Exp Immunol 175(2):139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, Uzel G, DeRavin SS, Priel DAL, Soule BP, Zarember KA, Malech HL, Holland SM, Gallin JI (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van de Geer A, Nieto-Patlan A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, de Boer M et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128(9):3957–3975

    Article  PubMed  PubMed Central  Google Scholar 

  25. Peng J, Redman CM, Wu X, Song X, Walker RH, Westhoff CM, Lee S (2007) Insights into extensive deletions around the XK locus associated with McLeod phenotype and characterization of two novel cases. Gene 392(1–2):142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Jannière L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL (2011) Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci 97(9):4654–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milligan KL, Mann D, Rump A, Anderson VL, Hsu AP, Kuhns DB, Zerbe CS, Holland SM (2016) Complete myeloperoxidase deficiency: beware the "false-positive" Dihydrorhodamine oxidation. J Pediatr 176:204–206

    Article  PubMed  Google Scholar 

  29. van Bruggen R, Bautista JM, Petropoulou T, de Boer M, van Zwieten R, Gomez-Gallego F, Belohradsky BH et al (2002) Deletion of leucine 61 in glucose-6-phosphate dehydrogenase leads to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood 100(3):1026–1030

    Article  PubMed  Google Scholar 

  30. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S, Yockey L, Darnell DN, Barnhart L, Daub J, Boris L, Rump AP, Anderson VL, Haney C, Kuhns DB, Rosenzweig SD, Kelly C, Zelazny A, Mason T, DeRavin SS, Kang E, Gallin JI, Malech HL, Olivier KN, Uzel G, Freeman AF, Heller T, Zerbe CS, Holland SM (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183

    Article  CAS  PubMed  Google Scholar 

  31. Thomsen IP, Smith MA, Holland SM, Creech CB (2016) A comprehensive approach to the Management of Children and Adults with chronic granulomatous disease. J Allergy Clin Immunol Pract 4(6):1082–1088

    Article  PubMed  Google Scholar 

  32. Blancas-Galicia L, Santos-Chavez E, Deswarte C, Mignac Q, Medina-Vera I, Leon-Lara X, Roynard M et al (2020) Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease. J Clin Immunol (ePub) 40:475–493

    Article  CAS  Google Scholar 

  33. Falcone EL, Petts JR, Fasano MB, Ford B, Nauseef WM, Neves JF, Simoes MJ et al (2016) Methylotroph infections and chronic granulomatous disease. Emerg Infect Dis 22(3):404–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reichenbach J, Lopatin U, Mahlaoui N, Beovic B, Siler U, Zbinden R, Seger RA, Galmiche L, Brousse N, Kayal S, Güngör T, Blanche S, Holland SM (2009) Actinomyces in chronic granulomatous disease: an emerging and unanticipated pathogen. Clin Infect Dis 49(11):1703–1710

    Article  PubMed  Google Scholar 

  35. Leiding JW, Holland SM (2012 [updated 2016]) chronic granulomatous disease. In: Adam MP, Ardinger HH, Pagon RA et al. (eds) GeneReviews® [internet]. Seattle (WA). University of Washington, Seattle; 1993-2020

  36. Conti F, Lugo-Reyes SO, Blancas Galicia L, He J, Aksu G, Borges de Oliveira E, Jr., Deswarte C et al (2016) Mycobacterial disease in patients with chronic granulomatous disease: A retrospective analysis of 71 cases. J Allergy Clin Immunol 138 (1):241–248.e243

  37. Haidar G, Zerbe CS, Cheng M, Zelazny AM, Holland SM, Sheridan KR (2017) Phellinus species: an emerging cause of refractory fungal infections in patients with X-linked chronic granulomatous disease. Mycoses 60(3):155–160

    Article  CAS  PubMed  Google Scholar 

  38. Sanmun D, Witasp E, Jitkaew S, Tyurina YY, Kagan VE, Ahlin A, Palmblad J et al (2009) Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: implications for chronic granulomatous disease. Am J Physiol Cell Physiol 297(3):C621–C631

    Article  CAS  PubMed  Google Scholar 

  39. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW (2009) Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn's disease. Am J Gastroenterol 104(1):117–124

    Article  CAS  PubMed  Google Scholar 

  40. Connelly JA, Marsh R, Parikh S, Talano JA (2018) Allogeneic hematopoietic cell transplantation for chronic granulomatous disease: controversies and state of the art. J pediatric infect dis Soc 7 (suppl_1):S31-S39

  41. Dunogue B, Pilmis B, Mahlaoui N, Elie C, Coignard-Biehler H, Amazzough K, Noel N et al (2017) Chronic granulomatous disease in patients reaching adulthood: a Nationwide study in France. Clin Infect Dis 64(6):767–775

    Article  PubMed  Google Scholar 

  42. Parekh C, Hofstra T, Church JA, Coates TD (2011) Hemophagocytic lymphohistiocytosis in children with chronic granulomatous disease. Pediatr Blood Cancer 56(3):460–462

    Article  PubMed  Google Scholar 

  43. Alvarez-Cardona A, Rodriguez-Lozano AL, Blancas-Galicia L, Rivas-Larrauri FE, Yamazaki-Nakashimada MA (2012) Intravenous immunoglobulin treatment for macrophage activation syndrome complicating chronic granulomatous disease. J Clin Immunol 32(2):207–211

    Article  PubMed  Google Scholar 

  44. Wei A, Ma H, Zhang L, Li Z, Zhang Q, Wang D, Zhang L, Lian H, Zhang R, Wang T (2020) Hemophagocytic lymphohistiocytosis resulting from a cytokine storm triggered by septicemia in a child with chronic granuloma disease: a case report and literature review. BMC Pediatr 20(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bielorai B, Toren A, Wolach B, Mandel M, Golan H, Neumann Y, Kaplinisky C, Weintraub M, Keller N, Amariglio N, Paswell J, Rechavi G (2000) Successful treatment of invasive aspergillosis in chronic granulomatous disease by granulocyte transfusions followed by peripheral blood stem cell transplantation. Bone Marrow Transplant 26(9):1025–1028

    Article  CAS  PubMed  Google Scholar 

  46. Marciano BE, Allen ES, Conry-Cantilena C, Kristosturyan E, Klein HG, Fleisher TA, Holland SM, Malech HL, Rosenzweig SD (2017) Granulocyte transfusions in patients with chronic granulomatous disease and refractory infections: the NIH experience. J Allergy Clin Immunol 140(2):622–625

    Article  PubMed  PubMed Central  Google Scholar 

  47. Slack MA, Thomsen IP (2018) Prevention of infectious complications in patients with chronic granulomatous disease. J pediatric infect dis Soc 7 (suppl_1):S25-S30

  48. Gallin JI, Buescher ES, Seligmann BE, Nath J, Gaither T, Katz P (1983) NIH conference. Recent advances in chronic granulomatous disease. Ann Intern Med 99(5):657–674

    Article  CAS  PubMed  Google Scholar 

  49. Margolis DM, Melnick DA, Alling DW, Gallin JI (1990) Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J Infect Dis 162(3):723–726

    Article  CAS  PubMed  Google Scholar 

  50. Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B, Eisenstein EM, Turner ML, DeCarlo ES, Starling JM, Holland SM (2003) Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med 348(24):2416–2422

    Article  CAS  PubMed  Google Scholar 

  51. Blumental S, Mouy R, Mahlaoui N, Bougnoux ME, Debre M, Beaute J, Lortholary O et al (2011) Invasive mold infections in chronic granulomatous disease: a 25-year retrospective survey. Clin Infect Dis 53(12):e159–e169

    Article  PubMed  Google Scholar 

  52. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group (1991). N Engl J Med 324 (8):509–516

  53. Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, Rossi P, Gattorno M, Rabusin M, Azzari C, Dellepiane RM, Pietrogrande MC, Trizzino A, di Bartolomeo P, Martino S, Carpino L, Cossu F, Locatelli F, Maccario R, Pierani P, Putti MC, Stabile A, Notarangelo LD, Ugazio AG, Plebani A, de Mattia D, IPINET. (2008) Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol 126(2):155–164

    Article  CAS  PubMed  Google Scholar 

  54. Naderi beni F, Fattahi F, Mirshafiey A, Ansari M, Mohsenzadegan M, Movahedi M, Pourpak Z et al (2012) Increased production of nitric oxide by neutrophils from patients with chronic granulomatous disease on interferon-gamma treatment. Int Immunopharmacol 12 (4):689–693

  55. Oikonomou V, Moretti S, Renga G, Galosi C, Borghi M, Pariano M, Puccetti M, Palmerini CA, Amico L, Carotti A, Prezioso L, Spolzino A, Finocchi A, Rossi P, Velardi A, Aversa F, Napolioni V, Romani L (2016) Noncanonical fungal autophagy inhibits inflammation in response to IFN-gamma via DAPK1. Cell Host Microbe 20(6):744–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen LE, Minkes RK, Shackelford PG, Strasberg SM, Kuo EY, Langer JC (2003) Cut it out: managing hepatic abscesses in patients with chronic granulomatous disease. J Pediatr Surg 38(5):709–713

    Article  PubMed  Google Scholar 

  57. Straughan DM, McLoughlin KC, Mullinax JE, Marciano BE, Freeman AF, Anderson VL, Uzel G et al (2018) The changing paradigm of Management of Liver Abscesses in chronic granulomatous disease. Clin Infect Dis 66(9):1427–1434

    Article  CAS  PubMed  Google Scholar 

  58. Uzel G, Orange JS, Poliak N, Marciano BE, Heller T, Holland SM (2010) Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis 51(12):1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, Gresnigt MS, Begun J, Plantinga TS, Joosten LAB, van der Meer JWM, Chamilos G, Netea MG, Xavier RJ, Dinarello CA, Romani L, van de Veerdonk FL (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111(9):3526–3531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hahn KJ, Ho N, Yockey L, Kreuzberg S, Daub J, Rump A, Marciano BE, Quezado M, Malech HL, Holland SM, Heller T, Zerbe CS (2015) Treatment with Anakinra, a recombinant IL-1 receptor antagonist, unlikely to induce lasting remission in patients with CGD colitis. Am J Gastroenterol 110(6):938–939

    Article  CAS  PubMed  Google Scholar 

  61. Gabrion A, Hmitou I, Moshous D, Neven B, Lefevre-Utile A, Diana JS, Suarez F et al (2017) Mammalian target of rapamycin inhibition counterbalances the inflammatory status of immune cells in patients with chronic granulomatous disease. J allergy Clin Immunol 139 (5):1641-1649.e1646

  62. Fernandez-Boyanapalli RF, Frasch SC, Thomas SM, Malcolm KC, Nicks M, Harbeck RJ, Jakubzick CV et al (2015) Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease. J allergy Clin Immunol 135 (2):517-527.e512

  63. Hule GP, Bargir UA, Kulkarni M, Kambli P, Taur P, Desai M, Madkaikar MR (2019) Does pioglitazone Lead to neutrophil extracellular traps formation in chronic granulomatous disease patients? Front Immunol 10:1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fernandez-Boyanapalli R, Frasch SC, Riches DW, Vandivier RW, Henson PM, Bratton DL (2010) PPARgamma activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease. Blood 116(22):4512–4522

    Article  PubMed  PubMed Central  Google Scholar 

  65. Migliavacca M, Assanelli A, Ferrua F, Cicalese MP, Biffi A, Frittoli M, Silvani P et al (2016) Pioglitazone as a novel therapeutic approach in chronic granulomatous disease. J allergy Clin Immunol 137 (6):1913-1915.e1912

  66. Douda DN, Khan MA, Grasemann H, Palaniyar N (2015) SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A 112(9):2817–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahlin A, Fasth A (2015) Chronic granulomatous disease - conventional treatment vs. hematopoietic stem cell transplantation: an update. Curr Opin Hematol 22(1):41–45

    Article  PubMed  CAS  Google Scholar 

  68. Cole T, McKendrick F, Titman P, Cant AJ, Pearce MS, Cale CM, Goldblatt D, Gennery AR (2013) Health related quality of life and emotional health in children with chronic granulomatous disease: a comparison of those managed conservatively with those that have undergone haematopoietic stem cell transplant. J Clin Immunol 33(1):8–13

    Article  CAS  PubMed  Google Scholar 

  69. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, Hartzman R, Rizzo JD, Horowitz M, Confer D, Maiers M (2014) HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 371(4):339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de la Morena MT, Nelson RP Jr (2014) Recent advances in transplantation for primary immune deficiency diseases: a comprehensive review. Clin Rev Allergy Immunol 46(2):131–144

    Article  PubMed  CAS  Google Scholar 

  71. Kekre N, Antin JH (2014) Hematopoietic stem cell transplantation donor sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood 124(3):334–343

    Article  CAS  PubMed  Google Scholar 

  72. Shouval R, Fein JA, Labopin M, Kröger N, Duarte RF, Bader P, Chabannon C, Kuball J, Basak GW, Dufour C, Galimard JE, Polge E, Lankester A, Montoto S, Snowden JA, Styczynski J, Yakoub-Agha I, Mohty M, Nagler A (2019) Outcomes of allogeneic haematopoietic stem cell transplantation from HLA-matched and alternative donors: a European Society for Blood and Marrow Transplantation registry retrospective analysis. The Lancet Haematology 6(11):e573–e584

    Article  PubMed  Google Scholar 

  73. Klein OR, Chen AR, Gamper C, Loeb D, Zambidis E, Llosa N, Huo J, Dezern AE, Steppan D, Robey N, Holuba MJ, Cooke KR, Symons HJ (2016) Alternative-donor hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for nonmalignant disorders. Biol Blood Marrow Transplant 22(5):895–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoenig M, Niehues T, Siepermann K, Jacobsen EM, Schutz C, Furlan I, Duckers G et al (2014) Successful HLA haploidentical hematopoietic SCT in chronic granulomatous disease. Bone Marrow Transplant 49(10):1337–1338

    Article  CAS  PubMed  Google Scholar 

  75. Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins AM, Gibson B, Sedlacek P, Krol L, Strahm B, Zaidman I, Kalwak K, Talano JA, Woolfrey A, Fraser C, Meyts I, Müller I, Wachowiak J, Bernardo ME, Veys P, Sykora KW, Gennery AR, Slatter M (2016) Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood 128(3):440–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arnold DE, Seif AE, Jyonouchi S, Sullivan KE, Bunin NJ, Heimall JR (2019) Allogeneic hematopoietic stem cell transplantation in adolescent patients with chronic granulomatous disease. J Allergy Clin Immunol Pract 7(3):1052–1054 e1052

    Article  PubMed  Google Scholar 

  77. Yonkof JR, Gupta A, Fu P, Garabedian E, Dalal J (2019) Role of allogeneic hematopoietic stem cell transplant for chronic granulomatous disease (CGD): a report of the United States Immunodeficiency Network. J Clin Immunol 39(4):448–458

    Article  CAS  PubMed  Google Scholar 

  78. Gungor T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, Vermont C et al (2014) Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet 383(9915):436–448

    Article  CAS  PubMed  Google Scholar 

  79. Marciano BE, Zerbe CS, Falcone EL, Ding L, DeRavin SS, Daub J, Kreuzburg S et al (2018) X-linked carriers of chronic granulomatous disease: illness, lyonization, and stability. J Allergy Clin Immunol 141(1):365–371

    Article  CAS  PubMed  Google Scholar 

  80. Battersby AC, Braggins H, Pearce MS, Cale CM, Burns SO, Hackett S, Hughes S et al (2017) Inflammatory and autoimmune manifestations in X-linked carriers of chronic granulomatous disease in the United Kingdom. J allergy Clin Immunol 140 (2):628-630.e626

  81. Marsh RA, Leiding JW, Logan BR, Griffith LM, Arnold DE, Haddad E, Falcone EL et al (2019) Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT. J Clin Immunol 39(7):653–667

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kühlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, du Y, Jenkins NA, Copeland NG, Lüthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12(4):401–409

    Article  CAS  PubMed  Google Scholar 

  83. Kang EM, Choi U, Theobald N, Linton G, Long Priel DA, Kuhns D, Malech HL (2010) Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 115(4):783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kohn DB, Booth C, Kang EM, Pai SY, Shaw KL, Santilli G, Armant M et al (2020) Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat med (ePub)

  85. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  PubMed  Google Scholar 

  86. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646

    Article  CAS  PubMed  Google Scholar 

  87. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346 (6213):1258096

  88. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klatt D, Cheng E, Philipp F, Selich A, Dahlke J, Schmidt RE, Schott JW, Büning H, Hoffmann D, Thrasher AJ, Schambach A (2019) Targeted repair of p47-CGD in iPSCs by CRISPR/Cas9: functional correction without cleavage in the highly homologous Pseudogenes. Stem Cell Reports 13(4):590–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Battersby AC, Cale AM, Goldblatt D, Gennery AR (2013) Clinical manifestations of disease in X-linked carriers of chronic granulomatous disease. J Clin Immunol 33(8):1276–1284

    Article  CAS  PubMed  Google Scholar 

  91. Cale CM, Morton L, Goldblatt D (2007) Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 148(1):79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hauck F, Koletzko S, Walz C, von Bernuth H, Klenk A, Schmid I, Belohradsky BH et al (2016) Diagnostic and treatment options for severe IBD in female X-CGD carriers with non-random X-inactivation. J Crohns Colitis 10(1):112–115

    Article  PubMed  Google Scholar 

  93. Ahlin A, Fugelang J, de Boer M, Ringden O, Fasth A, Winiarski J (2013) Chronic granulomatous disease-haematopoietic stem cell transplantation versus conventional treatment. Acta Paediatr 102(11):1087–1094

    PubMed  Google Scholar 

  94. Khandelwal P, Bleesing JJ, Davies SM, Marsh RA (2016) A single-center experience comparing Alemtuzumab, Fludarabine, and Melphalan reduced-intensity conditioning with Myeloablative Busulfan, cyclophosphamide, and antithymocyte globulin for chronic granulomatous disease. Biol Blood Marrow Transplant 22(11):2011–2018

    Article  CAS  PubMed  Google Scholar 

  95. Zou J, Sweeney CL, Chou BK, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117(21):5561–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Flynn R, Grundmann A, Renz P, Hanseler W, James WS, Cowley SA, Moore MD (2015) CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol 43 (10):838-848.e833

  97. Merling RK, Sweeney CL, Chu J, Bodansky A, Choi U, Priel DL, Kuhns DB, Wang H, Vasilevsky S, de Ravin SS, Winkler T, Dunbar CE, Zou J, Zarember KA, Gallin JI, Holland SM, Malech HL (2015) An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 23(1):147–157

    Article  CAS  PubMed  Google Scholar 

  98. Dreyer AK, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, Siler U, Reichenbach J, Grez M, Moritz T, Schambach A, Cathomen T (2015) TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 69:191–200

    Article  CAS  PubMed  Google Scholar 

  99. De Ravin SS, Reik A, Liu PQ, Li L, Wu X, Su L, Raley C et al (2016) Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat Biotechnol 34(4):424–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. De Ravin SS, Li L, Wu X, Choi U, Allen C, Koontz S, Lee J et al (2017) CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med 9(372):eaah3480

    Article  PubMed  CAS  Google Scholar 

  101. Sweeney CL, Zou J, Choi U, Merling RK, Liu A, Bodansky A, Burkett S, Kim JW, de Ravin SS, Malech HL (2017) Targeted repair of CYBB in X-CGD iPSCs requires retention of Intronic sequences for expression and functional correction. Mol Ther 25(2):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Luen Chiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Research with Animals and Human Subjects

This article does not contain any studies with human participants or animals performed by any of authors.

Ethical Approval and Informed Consent

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, HH., Yang, YH. & Chiang, BL. Chronic Granulomatous Disease: a Comprehensive Review. Clinic Rev Allerg Immunol 61, 101–113 (2021). https://doi.org/10.1007/s12016-020-08800-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08800-x

Keywords

Navigation