Skip to main content

Markers of Inflammation

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1803))

Abstract

Inflammation is a complex and necessary component of the response to biological, chemical, or physical stimuli, and the cellular and molecular events that initiate and regulate the interactions between the various players in the inflammatory process remain a source of ongoing investigation. In the acute phase of the inflammatory response, cells of the immune system migrate to the site of injury in a carefully orchestrated sequence of events that is facilitated by soluble mediators such as cytokines, chemokines, and acute-phase proteins. Depending on the degree of injury, this acute phase may be sufficient to resolve the damage and initiate healing processes. Persistent inflammation, either as a result of prolonged exposure to stimulation or an inappropriate reaction against self-molecules, can lead to the chronic phase, in which tissue damage and fibrosis can occur. Chronic inflammation has been reported to contribute to numerous diseases, including arthritis, asthma, atherosclerosis, autoimmune diseases, diabetes, and cancer, and to conditions of aging. Hematology and clinical chemistry data from standard toxicology studies can provide an initial indication of the presence and sometimes the location of inflammation. These data may suggest more specific immune function assays that are necessary to determine the presence and/or mechanism(s) of immunomodulation. Although changes in hematology dynamics, acute-phase proteins, complement factors, and cytokines are common to virtually all inflammatory conditions, and can be measured by a variety of techniques, individual biomarkers have yet to be strongly associated with specific pathologic events. Thus, although sensitive indicators of inflammation, these factors generally lack the specificity to identify the offending cause. The profile seen in a given inflammatory condition is dependent on the severity, chronicity, and mechanisms involved in the inflammatory process, as well as the species and the capacity of the individual’s immune system to respond and adapt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. New Engl J Med 340:448–455

    Article  CAS  PubMed  Google Scholar 

  2. NIA Workshop on Inflammation, Inflammatory Mediators, and Aging (2004) Sponsored by National Institute on Aging, National Institutes of Health, Department of Health and Human Services. Workshop Summary. http://www.nia.nih.gov/NR/rdonlyres/A8B847EC-8E2B-418D-AD39-62D56E8CEAB2/2083/NIAWorkshoponInflammationMtgRpt61805_Ed.pdf. Accessed 9 Jan 2009

  3. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alegre J, Jufresa J, Segura R et al (2002) Pleural-fluid myeloperoxidase in complicated and noncomplicated parapneumonic pleural effusions. Eur Respir J 19:320–325

    Article  CAS  PubMed  Google Scholar 

  5. Buttarello M, Plebani M (2008) Automated blood cell counts: state of the art. Am J Clin Pathol 130:104–116

    Article  PubMed  Google Scholar 

  6. Grattan CE, Dawn G, Gibbs S, Francis DM (2003) Blood basophil numbers in chronic ordinary urticaria and healthy controls: diurnal variation, influence of loratadine and prednisolone and relationship to disease activity. Clin Exp Allergy 33:337–341

    Article  CAS  PubMed  Google Scholar 

  7. Bollinger AP, Everds NE, Zimmerman KL et al (2010) Hematology of laboratory animals. In: Weiss DJ, Waldrop KJ (eds) Schalm’s veterinary hematology, 6th edn. Wiley-Blackwell, Singapore

    Google Scholar 

  8. Lee JJ, McGarry MP (2007) When is a mouse basophil not a basophil? Blood 109:859–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zimmermann N, Hershey GK, Foster PS, Rothenberg ME (2003) Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 111:227–242

    Article  CAS  PubMed  Google Scholar 

  10. Latimer KS, Mahaffey EA, Prasse KW (eds) (2003) Duncan & Prasse’s veterinary laboratory medicine: clinical pathology, 4th edn. Iowa State Press, Ames, Iowa. 450 pp

    Google Scholar 

  11. Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25:489–495

    Article  CAS  PubMed  Google Scholar 

  12. Kosone T, Takagi H, Horiguchi N et al (2007) Hepatocyte growth factor accelerates thrombopoiesis in transgenic mice. Lab Investig 87:284–291

    Article  CAS  PubMed  Google Scholar 

  13. González-Villalva A, Fortoul TI, Avila-Costa MR et al (2006) Thrombocytosis induced in mice after subacute and subchronic V2O5 inhalation. Toxicol Ind Health 22:113–116

    Article  PubMed  Google Scholar 

  14. Sonnenberg GF, Artis D (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 21:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Everds NE, Snyder PW, Bailey KL et al (2013) Interpreting stress responses during routine toxicity studies: a review of the biology, impact, and assessment. Toxicol Pathol 41:560–614

    Article  PubMed  Google Scholar 

  16. Means RT, Krantz SB (1992) Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80:1639–1647

    PubMed  Google Scholar 

  17. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352:1012–1023

    Article  Google Scholar 

  18. Zarychanski R, Houston DS (2008) Anemia of chronic disease: a harmful disorder or an adaptive, beneficial response? CMAJ 179:333–337

    Article  PubMed  PubMed Central  Google Scholar 

  19. Evans EW (2008) Clinical pathology as crucial insight into immunotoxicity testing. In: Herzyk DJ, Bussiere JL (eds) Immunotoxicology strategies for pharmaceutical safety assessment. A. John Wiley and Sons, Inc., Hoboken, pp 13–26

    Google Scholar 

  20. Angiari S (2015) Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 14:984–995

    Article  CAS  PubMed  Google Scholar 

  21. Kelly M, Hwang JM, Kubes P (2007) Modulating leukocyte recruitment in inflammation. J Allergy Clin Immunol 120:3–10

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt S, Moser M, Sperandio M (2013) The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol 55:49–58

    Article  CAS  PubMed  Google Scholar 

  23. Sell S (2001) Inflammation and wound healing. In: Sell S (ed) Immunology, immunopathology and immunity, 6th edn. ASM Press, Washington, DC, pp 33–100

    Chapter  Google Scholar 

  24. Laubli H, Lubor B (2010) Selectins promote tumor metastasis. Semin Cancer Biol 20:169–177

    Article  CAS  PubMed  Google Scholar 

  25. Mousa SA (2002) Cell adhesion molecules: potential therapeutic and diagnostic implications. In: Rose NR, Hamilton RG, Detrick B (eds) Manual of clinical laboratory immunology, 6th edn. ASM Press, Washington, DC, pp 368–375

    Google Scholar 

  26. Langereis JD (2013) Neutrophil integrin affinity regulation in adhesion, migration, and bacterial clearance. Cell Adh Migr 7:476–481

    Article  PubMed  PubMed Central  Google Scholar 

  27. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signaling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582

    Article  CAS  PubMed  Google Scholar 

  28. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125:S3–S23

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hanada T, Yoshimura A (2002) Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 13:413–421

    Article  CAS  PubMed  Google Scholar 

  30. Akdis M, Aab A, Altunbulakli C, et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in disease. J Allergy Clin Immunol 138:984–1010

    Article  CAS  PubMed  Google Scholar 

  31. Norris CA, He M, Kang L-I et al (2014) Synthesis of IL-6 by hepatocytes is a normal response to common hepatic stimuli. PLoS One 9(4):e96053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  33. Sarada S, Himadri P, Mishra C et al (2008) Role of oxidative stress and NFKB in hypoxia-induced pulmonary edema. Exp Biol Med (Maywood) 233:1088–1098

    Article  CAS  Google Scholar 

  34. Bashir MM, Sharma MR, Werth VP (2009) TNF-alpha production in the skin. Arch Dermatol Res 301:87–91

    Article  CAS  PubMed  Google Scholar 

  35. Schmid H, Boucherot A, Yasuda Y et al (2006) Modular activation of nuclear factor-kappa B transcriptional programs in human diabetic nephropathy. Diabetes 55:2993–3003

    Article  CAS  PubMed  Google Scholar 

  36. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bachmann MF, Kopf M, Marsland BJ (2006) Chemokines: more than just road signs. Nat Rev Immunol 6:159–164

    Article  CAS  PubMed  Google Scholar 

  38. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  CAS  PubMed  Google Scholar 

  39. Abbadie C (2005) Chemokines, chemokine receptors and pain. Trends Immunol 26:529–534

    Article  CAS  PubMed  Google Scholar 

  40. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84

    Article  CAS  PubMed  Google Scholar 

  41. Islam SA, Medoff BD, Luster AD (2016) Chemokine and chemokine receptor analysis. In: Detrick B, Schmitz JL, Hamilton RG (eds) Manual of molecular and clinical laboratory immunology, 8th edn. ASM Press, Washington, DC, pp 343–356

    Google Scholar 

  42. Evans EW, Duncan JR (2003) Proteins, lipids and carbohydrates. In: Latimer KS, Mahaffey EA, Prasse KW (eds) Duncan & Prasse’s veterinary laboratory medicine: clinical pathology, 4th edn. Singapore, Wiley-Blackwell, pp 173–209

    Google Scholar 

  43. Gentry PA (1999) Acute phase proteins. In: Loeb WF, Quimby FW (eds) The clinical chemistry of laboratory animals, 2nd edn. Taylor and Francis, Philadelphia, PA, pp 336–398

    Google Scholar 

  44. Cray C, Zaias J, Altman NH (2009) Acute phase response in animals: a review. Comp Med 59:517–526

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Eckersall PD, Bell R (2010) Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine. Vet J 185:23–27

    Article  CAS  PubMed  Google Scholar 

  46. Kushner I, Rzewnicki D, Samols D (2006) What does minor elevation of C-reactive protein signify? Am J Med 119:166e.17–166e.28

    Article  Google Scholar 

  47. Kind CRH, Pepys MB (1984) The role of C-reactive protein (CRP) measurement in clinical practice. Int Med 5:112–151

    Google Scholar 

  48. Acevedo M, Corbalán R, Braun S et al (2006) C-reactive protein and atrial fibrillation: “evidence for the presence of inflammation in the perpetuation of the arrhythmia”. Int J Cardiol 108:326–331

    Article  PubMed  Google Scholar 

  49. Folsom AR, Aleksic N, Catellier D et al (2002) C-reactive protein and incident coronary heart disease in the atherosclerosis risk in communities (ARIC) study. Am Heart J 144:233–238

    Article  CAS  PubMed  Google Scholar 

  50. Nesto R (2004) C-reactive protein, its role in inflammation, type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabet Med 21:810–817

    Article  CAS  PubMed  Google Scholar 

  51. Corrado E, Rizzo M, Muratori I et al (2006) Association of elevated fibrinogen and C-reactive protein levels with carotid lesions in patients with newly diagnosed hypertension or type II diabetes. Arch Med Res 37:1004–1009

    Article  CAS  PubMed  Google Scholar 

  52. Altieri D (2001) Interface between inflammation and coagulation. In: Ley K (ed) Physiology of inflammation. Oxford University Press, Oxford, pp 402–422

    Chapter  Google Scholar 

  53. Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28:184–192

    Article  CAS  PubMed  Google Scholar 

  54. Sitrin RG, Pan PM, Srikanth S, Todd RF 3rd (1998) Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. J Immunol 161:1462–1470

    PubMed  CAS  Google Scholar 

  55. Paraskevas KI, Baker DM, Vrentzos GE, Mikhailidis DP (2008) The role of fibrinogen and fibrinolysis in peripheral arterial disease. Thromb Res 122:1–12

    Article  CAS  PubMed  Google Scholar 

  56. Murphy KM, Weaver C (2016) Janeway’s Immunobiology, 8th edn. Garland Science Textbooks, New York. 928 p

    Book  Google Scholar 

  57. Giclas P (2002) Choosing complement tests: differentiating between hereditary and acquired deficiency. In: Rose NR, Hamilton RG, Detrick B (eds) Manual of clinical laboratory immunology, 6th edn. ASM Press, Washington, DC, pp 111–116

    Google Scholar 

  58. Morgan BP, Marchbank KJ, Longhi MP et al (2005) Complement: central to innate immunity and bridging to adaptive responses. Immunol Lett 97:171–179

    Article  CAS  PubMed  Google Scholar 

  59. Shen Z, Want EJ, Chen W et al (2006) Sepsis plasma protein profiling with immunodepletion, three-dimensional liquid chromatography tandem mass spectrometry, and spectrum counting. J Proteome Res 5:3154–3160

    Article  CAS  PubMed  Google Scholar 

  60. He QY, Yang H, Wong BC, Chiu JF (2008) Serological proteomics of gastritis: degradation of apolipoprotein A-1 and alpha-1-antitrypsin is a common response to inflammation irrespective of helicobacter pylori infection. Dig Dis Sci 53:3112–3118

    Article  CAS  PubMed  Google Scholar 

  61. Cho WC, Yip TT, Chung WS et al (2006) Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats. J Cell Biochem 99:256–268

    Article  CAS  PubMed  Google Scholar 

  62. Hanas JS, Hocker JR, Cheung JY et al (2008) Biomarker identification in human pancreatic cancer sera. Pancreas 36:61–69

    Article  CAS  PubMed  Google Scholar 

  63. Kristiansson MH, Bhat VB, Babu IR et al (2007) Comparative time-dependent analysis of potential inflammation biomarkers in lymphoma-bearing SJL mice. J Proteome Res 6:1735–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lull ME, Carkaci-Salli N, Freeman WM et al (2008) Plasma biomarkers in pediatric patients undergoing cardiopulmonary bypass. Pediatr Res 63:638–644

    Article  CAS  PubMed  Google Scholar 

  65. Wu J, Kobayashi M, Sousa EA et al (2005) Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics 4:1251–1264

    Article  CAS  PubMed  Google Scholar 

  66. Barber GN (2015) STING: infection, inflammation and cancer. Nat Rev Immunol 15:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ezendam J, Staedtler F, Pennings J et al (2004) Toxicogenomics of subchronic hexachlorobenzene exposure in Brown Norway rats. Environ Health Perspect 112:782–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tabibiazar R, Wagner RA, Deng A et al (2006) Proteomic profiles of serum inflammatory markers accurately predict atherosclerosis in mice. Physiol Genomics 5:194–202

    Article  CAS  Google Scholar 

  69. Parikh SV, de Lemos JA (2006) Biomarkers in cardiovascular disease: integrating pathophysiology into clinical practice. Am J Med Sci 332:186–197

    Article  PubMed  Google Scholar 

  70. Mehra MR, Feller E, Rosenberg S (2006) The promise of protein-based and gene-based clinical markers in heart transplantation: from bench to bedside. Nat Clin Pract Cardiovasc Med 3:136–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Georgia Roberts and Dr. Gregory Kane for their thoughtful and comprehensive review of this chapter. This work was supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dori R. Germolec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Germolec, D.R., Shipkowski, K.A., Frawley, R.P., Evans, E. (2018). Markers of Inflammation. In: DeWitt, J., Rockwell, C., Bowman, C. (eds) Immunotoxicity Testing. Methods in Molecular Biology, vol 1803. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8549-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8549-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8548-7

  • Online ISBN: 978-1-4939-8549-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics