Skip to main content
Log in

Seasonal dynamics of phenolic substances from the macrophyte Myriophyllum aquaticum and their allelopathic effects on the growth and reproduction of Plationus patulus (Rotifera: Brachionidae)

  • ECOLOGY OF SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied temporal variations in phenolic compounds from the hydrophyte Myriophyllum aquaticum collected from a shallow lake. The effects of macrophyte-conditioned medium containing phenols with other compounds and phenols only as well as plant tissue extracts were tested on the survival and reproduction of the rotifer Plationus patulus. Apical tissue of the hydrophyte had the highest levels of total phenols. Rotifers in controls, and those exposed to phenols from the macrophyte-conditioned medium grew rapidly within two weeks, but cultures exposed to phenols extracted from the apical region took longer. Age-specific survival of P. patulus showed a rapid decline within one week when exposed to plant extracts compared to conditioned medium. The average lifespan of P. patulus was longer in the macrophyte-conditioned medium as compared to the controls, but shorter in the aqueous plant extract. Gross and net reproductive rates showed similar trends, wherein the controls had significantly higher values than those exposed to plant extracts, but increased with the conditioned medium only at the two lower concentrations tested. The demographic response of rotifers exposed to phenols only from the macrophyte-conditioned medium differed from those of the macrophyte-conditioned medium containing both phenolic and non-phenolic compounds. Macrophyte phenolic compounds influenced the survival and reproduction of P. patulus but depended on the other chemicals released into the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We confirm that our data will be available to anyone interested to re-use them, after the manuscript has been published and with approval of the copyright owner.

References

  • Abubakar, A. R. & M. Haque, 2020. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences 12(1): 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dalahmeh, Y., N. Al-Bataineh, S. S. Al-Balawi, J. N. Lahham, I. F. Al-Momani, M. S. Al-Sheraideh, A. S. Mayyas, A. S. T. Abu Orabi & M. A. Al-Qudah, 2022. LC-MS/MS screening, total phenolic, flavonoid and antioxidant contents of crude extracts from three Asclepiadaceae species growing in Jordan. Molecules 27: 859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel, H. M., 1993. Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology 19(7): 1521–1552.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, N., U. Blaschke, E. Beutler, E. M. Gross, K. Jenett-Siems, K. Siems & S. Hilt, 2009. Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquatic Botany 91(2): 110–116.

    Article  CAS  Google Scholar 

  • Bolser, R. C., M. E. Hay, N. Lindquist, W. Fenical & D. Wilson, 1998. Chemical defenses of freshwater macrophytes against crayfish Herbivory. Journal of Chemical Ecology 24: 1639–1658.

    Article  CAS  Google Scholar 

  • Bonilla-Barbosa, J. R. & B. S. Araúz, 2014. Plantas acuáticas exóticas y translocadas invasoras. Chapter 13. In Alfaro, R. E. M. & P. K. Osorio (eds), Especies Acuáticas invasoras en México CONABIO, Mexico City: 223–247.

    Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2000. Macrophyte and fish chemicals suppress Daphnia growth and alter life history traits. Oikos 88(1): 139–147.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., 2008. Hormesis: why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry 27: 1451–1474.

    Article  CAS  PubMed  Google Scholar 

  • Cerbin, S., E. van Donk & R. D. Gulati, 2007. The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquatic Ecology 41(2): 263–271.

    Article  Google Scholar 

  • Chapman, P. M., A. Fairbrother & D. Brown, 1998. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry 17: 99–108.

    Article  CAS  Google Scholar 

  • Choi, J. Y., S. K. Kim, K. S. Jeong & G. J. Joo, 2015. Distribution pattern of epiphytic microcrustaceans in relation to different macrophyte microhabitats in a shallow wetland (Upo wetlands, South Korea). Oceanological and Hydrobiological Studies 44(2): 151–163.

    Article  CAS  Google Scholar 

  • Ejsmont-Karabin, J. & M. Karpowicz, 2021. Rotifera in lake subhabitats. Aquatic Ecology 55: 1285–1296.

    Article  Google Scholar 

  • Espinosa-Rodríguez, C. A., G. Valencia-Del Toro, S. S. S. Sarma & S. Nandini, 2016. Allelopathic activity and chemical analysis of crude extracts from the macrophyte Egeria densa on selected phytoplankton species. Allelopathy Journal 37: 147–160.

    Google Scholar 

  • Espinosa-Rodríguez, C. A., S. S. S. Sarma & S. Nandini, 2017. Effect of the allelochemicals from the macrophyte Egeria densa on the competitive interactions of pelagic and littoral cladocerans. Chemistry and Ecology 33(3): 247–256.

    Article  CAS  Google Scholar 

  • Feller, I. C., D. F. Wigham, J. P. O’Neill & K. L. McKee, 1999. Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80: 2193–2205.

    Article  Google Scholar 

  • Forbes, V. & P. Calow, 2002. Population growth rate as a basis for ecological risk assessment of toxic chemicals. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 357: 1299–1306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gama-Flores, J. L., S. S. S. Sarma & S. Nandini, 2005. Interaction among copper toxicity, temperature and salinity on the population dynamics of Brachionus  rotundiformis (Rotifera). Hydrobiologia 546: 559–568.

    Article  CAS  Google Scholar 

  • González-Pérez, B. K., S. S. S. Sarma, M. E. Castellanos-Páez & S. Nandini, 2018. Multigenerational effects of triclosan on the demography of Plationus patulus and Brachionus havanaensis (Rotifera). Ecotoxicology and Environmental Safety 147: 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Gross, E. M., 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen 27(4): 2116–2119.

    CAS  Google Scholar 

  • Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22: 313–339.

    Article  Google Scholar 

  • Gross, E. & J. Garric (eds), 2019. Ecotoxicology. New Challenges and New Approaches. Elsevier, London, 212.

    Google Scholar 

  • Gross, E. & E. Bakker, 2012. The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions. In Iason, G., M. Dicke & S. Hartley (eds), The Ecology of Plant Secondary Metabolites: From Genes to Global Processes (Ecological Reviews) Cambridge University Press, Cambridge: 154–169.

    Chapter  Google Scholar 

  • Gross, E. M., H. Meyer & G. Schilling, 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41(1): 133–138.

    Article  CAS  Google Scholar 

  • Hasler, A. D. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30(3): 359–364.

    Article  Google Scholar 

  • He, Y., K. Zhao, H. Zhang, L. He, Y. Niu, M. Zhang & J. Xu, 2021. Linking macrophyte community structure with food chain length: a case study in the largest freshwater lake in China and ecological restoration implications. Ecological Indicators 123: 107363.

    Article  Google Scholar 

  • Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9(4): 422–432.

    Article  Google Scholar 

  • Hilt, S., M. G. Ghobrial & E. M. Gross, 2006. In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. Journal of Phycology 42(6): 1189–1198.

    Article  Google Scholar 

  • Hu, H. & Y. Hong, 2008. Algal-bloom control by allelopathy of aquatic macrophytes a review. Frontiers of Environmental Science & Engineering in China 2(4): 421–438.

    Article  Google Scholar 

  • Kammenga, J. & R. Laskowski (eds), 2000. Demography in Ecotoxicology. Wiley, New York, 318.

    Google Scholar 

  • Knauer, K., S. Mohr & U. Feiler, 2008. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing. Environmental Science and Pollution Research-International 15(4): 322.

    Article  PubMed  Google Scholar 

  • Krebs, C. J., 1985. Ecology; The Experimental Analysis of Distribution and Abundance, 3rd ed. Harper & Row, New York:

    Google Scholar 

  • Kuczyńska-Kippen, N., 2006. The diurnal distribution of rotifers (Rotifera) within a single Chara hispida bed. Journal of Freshwater Ecology 21(4): 553–559.

    Article  Google Scholar 

  • Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41(4): 794–798.

    Article  Google Scholar 

  • Leu, E., A. Krieger-Liszkay, C. Goussias & E. M. Gross, 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology 130(4): 2011–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindén, E. & M. Lehtiniemi, 2005. The lethal and sublethal effects of the aquatic macrophyte Myriophyllum spicatum on Baltic littoral planktivores. Limnology and Oceanography 50(2): 405–411.

    Article  Google Scholar 

  • Liu, C., S. M. Thomaz, Z. Li, T. Cao & K. E. Kovalenko (eds), 2020. Diversity and Eco-Physiological Responses of Aquatic Plants. Frontiers Media SA, Lausanne.

    Google Scholar 

  • Marko, M. D., E. M. Gross, R. M. Newman & F. K. Gleason, 2008. Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum. Aquatic Botany 88: 57–65.

    Article  CAS  Google Scholar 

  • Mishra, V. K. & N. Kumar, 2017. Microbial degradation of phenol: a review. Journal of Water Pollution & Purification Research 4(1): 17–22.

    CAS  Google Scholar 

  • Moss, B. R., 2018. Ecology of Freshwaters: Earth’s Bloodstream, Wiley, New York:

    Google Scholar 

  • Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research 34(11): 3026–3032.

    Article  CAS  Google Scholar 

  • Nandini, S. & S. S. S. Sarma, 2000. Lifetable demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density. Hydrobiologia 435: 117–126.

    Article  Google Scholar 

  • Nandini, S. & S. S. S. Sarma, 2013. Demographic characteristics of cladocerans subject to predation by the flatworm Stenostomum leucops. Hydrobiologia 715: 159–168.

    Article  Google Scholar 

  • Planas, D., F. Sarhan, L. Dube, H. Godmaire & C. Cadieux, 1981. Ecological significance of phenoliccompounds of Myriophyllum spicatum. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen 21(3): 1492–1496.

    CAS  Google Scholar 

  • Preißler, K., 1977. Do Rotifers show “avoidance of the shore”? Oecologia 27(3): 253–260.

    Article  PubMed  Google Scholar 

  • Rover, M. R. & R. C. Brown, 2013. Quantification of total phenols in bio-oil using the Folin-Ciocalteu method. Journal of Analytical and Applied Pyrolysis 104: 366–371.

    Article  CAS  Google Scholar 

  • Sarma, S. S. S. & S. Nandini, 2006. Review of recent ecotoxicological studies on cladocerans. Journal of Environmental Science and Health Part B 41(8): 1417–1430.

    Article  CAS  Google Scholar 

  • Sivaci, A., E. R. Sivaci & M. Sökmen, 2007. Changes in antioxidant activity, total phenolic and abscisic acid constituents in the aquatic plants Myriophyllum spicatum L. and Myriophyllum triphyllum Orchard exposed to cadmium. Ecotoxicology 16: 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Smolders, A. J. P., L. H. T. Vergeer, G. Van der Velde & J. G. M. Roelofs, 2000. Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? Oikos 91(2): 307–310.

    Article  CAS  Google Scholar 

  • Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313(1): 231–247.

    Article  Google Scholar 

  • Stebbing, A. R. D., 1982. Hormesis—the stimulation of growth by low levels of inhibitors. Science of the Total Environment 22(3): 213–234.

    Article  CAS  PubMed  Google Scholar 

  • Thiébaut, G., M. Tarayre & H. Rodríguez-Pérez, 2019. Allelopathic effects of native versus invasive plants on one major invader. Frontiers in Plant Science 10: 854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tungmunnithum, D., A. Thongboonyou, A. Pholboon & A. Yangsabai, 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5(3): 93.

    Article  CAS  PubMed Central  Google Scholar 

  • Vecchia, A. D., P. Villa & R. Bolpagni, 2020. Functional traits in macrophyte studies: current trends and future research agenda. Aquatic Botany 167: 103290.

    Article  Google Scholar 

  • Viveros-Legorreta, J. L., S. S. S. Sarma, L. A. Guerrero-Zuniga & A. Rodriguez-Dorantes, 2018. Bioassay of the effect of phenols produced by Myriophyllum aquaticum culture on Lactuca sativa. Hidrobiológica 28(1): 109–119.

    Article  Google Scholar 

  • Viveros-Legorreta, J. L., S. S. S. Sarma, M. E. Castellanos Páez & S. Nandini, 2020. Allelopathic effects from the macrophyte Myriophyllum aquaticum on the population growth and demography of Brachionus havanaensis (Rotifera). Allelopathy Journal 50(2): 213–224.

    Article  Google Scholar 

  • Weber, C. I., 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th edn. United States Environmental Protection Agency, Cincinnati, Ohio, EPA/600/4–90/027F, xv + 293 pp.

  • Zamora Barrios, C. A., S. Nandini & S. S. S. Sarma, 2015. Effect of crude extracts of Dolichospermum planctonicum on the demography of Plationus patulus (Rotifera) and Ceriodaphnia cornuta (Cladocera). Ecotoxicology 24: 85–93.

    Article  CAS  Google Scholar 

  • Zhang, X., D. Ma, M. M. Pulzatto, H. Yu, C. Liu & D. Yu, 2021. Moderate hydrological disturbance and high nutrient substrate enhance the performance of Myriophyllum aquaticum. Hydrobiologia 848: 2331–2343.

    Article  Google Scholar 

  • Zhu, J., B. Liu, J. Wang, Y. Gao & Z. Wu, 2010. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquatic Toxicology 98: 196–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study forms part of doctoral studies of first author at the Doctoral Programme of Biological Sciences and Health of the Metropolitan Autonomous University. JLVL thanks Consejo Nacional de Ciencia y Tecnología (CONACyT) for a doctoral scholarship (CVU: 584891). SSSS and SN are grateful to PAPIIT (IG 200820) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. S. Sarma.

Ethics declarations

Conflict of interest

We declare that all the co-authors of this manuscript have no conflict of interest.

Additional information

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen / Advances in the Ecology of Shallow Lakes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viveros-Legorreta, J.L., Sarma, S.S.S., Castellanos-Páez, M.E. et al. Seasonal dynamics of phenolic substances from the macrophyte Myriophyllum aquaticum and their allelopathic effects on the growth and reproduction of Plationus patulus (Rotifera: Brachionidae). Hydrobiologia 849, 3843–3858 (2022). https://doi.org/10.1007/s10750-022-04963-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04963-0

Keywords

Navigation