Skip to main content
Log in

Moderate hydrological disturbance and high nutrient substrate enhance the performance of Myriophyllum aquaticum

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phenotypic plasticity can determine the performance of exotic plants in environmental disturbance. Aquatic plants can adapt to the stress caused by water level fluctuations in the water level, water depth, or substrate nutrients through phenotypic plasticity. The high-potential invasiveness of Myriophyllum aquaticum in riparian wetlands may be associated with its growth and phenotypic plasticity. The interactive effects of fluctuations in the water level, water depth, and substrate nutrients on the growth performance of M. aquaticum were evaluated. We performed two two-factorial experiments to evaluate the effects of (i) frequency and amplitude of water level fluctuations and (ii) water depth and substrate nutrients on the performance of M. aquaticum. The results indicated that in the first experiment, low fluctuation frequency with a ± 20 cm amplitude significantly increased the value of all growth traits (except for total length of lateral branches). Regardless of fluctuation frequency, relative to a ± 60 cm amplitude and a static water level, the maximum values of total biomass, plant height, relative growth rate, and total length of lateral branches existed in moderate fluctuation amplitudes (± 20 cm, ± 40 cm). In the second experiment, the growth performance of M. aquaticum decreased with increasing water depth from 25 cm to 75 cm. High nutrient substrate significantly increased all growth traits (except for chlorophyll content) in water depths of 25 and 50 cm. Above all, M. aquaticum has optimal growth performance in response to low fluctuation frequency, moderate fluctuation amplitudes (± 20 cm, ± 40 cm), and high nutrient substrate in shallow water (water depth lower than 75 cm). These results indicate that M. aquaticum has a high-potential invasiveness in shallow water and with low disturbance of freshwater habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiken, S. G., 1981. A conspectus of Myriophyllum (Haloragaceae) in North America. Brittonia 33(1): 57–69.

    Article  Google Scholar 

  • Blom, C. W. P. M. & L. A. C. J. Voesenek, 1996. Flooding: the survival strategies of plants. Trends in Ecology & Evolution 11(7): 290–295.

    Article  CAS  Google Scholar 

  • Britton Simmons, K. & K. Abbott, 2008. Short- and long-term effects of disturbance and propagule pressure on a biological invasion. Journal of Ecology 96(1): 68–77.

    Article  Google Scholar 

  • Cao, J. J., Y. Wang & Z. L. Zhu, 2012. Growth response of the submerged macrophyte Myriophyllum spicatum to sediment nutrient levels and water-level fluctuations. Aquatic Biology 17(3): 295–303.

    Article  Google Scholar 

  • Carrillo, Y., A. Guarín & G. Guillot, 2006. Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Colombia). Aquatic Botany 85(1): 7–15.

    Article  Google Scholar 

  • Casanova, M. T. & M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147(2): 237–250.

    Article  Google Scholar 

  • Chen, Y., Y. Zhou, T. F. Yin, C. X. Liu & F. L. Luo, 2013. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. Plos ONE 8(11): 1–8.

    Article  CAS  Google Scholar 

  • Colmer, T. D. & L. A. C. J. Voesenek, 2009. Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology 36(8): 665–681.

    Article  CAS  PubMed  Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems–workshop conclusions. Hydrobiologia 506(1–3): 23–27.

    Article  Google Scholar 

  • Davidson, A. M., J. Michael & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive?A meta-analysis. Ecology Letters 14(4): 419–431.

    Article  PubMed  Google Scholar 

  • Falbel, T. G., J. B. Meehl & L. A. Staehelin, 1996. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant physiology 112(2): 821–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, S. F., H. H. Yu, C. H. Liu, Y. Dan, Y. Q. Han & L. G. Wang, 2015. The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia 746(1): 159–169.

    Article  CAS  Google Scholar 

  • Funk, J. L., 2008. Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology 96(6): 1162–1173.

    Article  Google Scholar 

  • Gillard, M., G. Thiébaut, N. Rossignol, S. Berardocco & C. Deleu, 2017. Impact of climate warming on carbon metabolism and on morphology of invasive and native aquatic plant species varies between spring and summer. Environmental and Experimental Botany 144: 1–10.

    Article  CAS  Google Scholar 

  • Gosselin, J. R., W. T. Haller, L. Getts, T. Griffin & E. Crawford, 2018. Effects of substrate nutrients on growth of three submersed aquatic plants. J Aquat Plant Manag 56: 39–46.

    Google Scholar 

  • Hoffman, A. & P. Parsons, 1991. Evolutionary Genetics and Evolutionary Stress. Oxford University Press, Oxford.

    Google Scholar 

  • Hussner, A., 2009. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research 49(5): 506–515.

    Article  Google Scholar 

  • Hussner, A., C. Meyer & J. Busch, 2008. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Research 49(1): 73–80.

    Article  Google Scholar 

  • Jauni, M., S. Gripenberg & S. Ramula, 2015. Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124(2): 122–129.

    Article  Google Scholar 

  • Lake, J. C. & M. R. Leishman, 2004. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biological Conservation 117(2): 215–226.

    Article  Google Scholar 

  • Lichtenthaler, H. K. & A. R. WellbuRn, 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11(5): 591–592.

    CAS  Google Scholar 

  • Luo, F.-L., S. Matsubara, Y. Chen, G. W. Wei, B. C. Dong, M. X. Zhang & F. H. Yu, 2018. Consecutive submergence and de-submergence both impede growth of a riparian plant during water level fluctuations with different frequencies. Environmental and Experimental Botany 155: 641–649.

    Article  Google Scholar 

  • Lv, R., M. El-Sabagh, T. Obitsu, T. Sugino, Y. Kurokawa & K. Kawamura, 2017. Effects of nitrogen fertilizer and harvesting stage on photosynthetic pigments and phytol contents of Italian ryegrass silage. Animal Science Journal 88(10): 1513–1522.

    Article  CAS  PubMed  Google Scholar 

  • Moles, A. T., H. Flores-Moreno, S. P. Bonser, D. I. Warton, A. Helm, L. Warman, D. J. Eldridge, E. Jurado, F. A. Hemmings & P. B. Reich, 2012. Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology 100(1): 116–127.

    Article  Google Scholar 

  • Molina-Montenegro, M. A., J. Peñuelas, S. Munné-Bosch & J. Sardans, 2012. Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments. Biological Invasions 14(1): 21–33.

    Article  Google Scholar 

  • Mommer, L. & E. J. Visser, 2005. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annals of Botany 96(4): 581–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira, I., A. Monteiro & M. T. Ferreira, 1999. Biology and control of Parrotfeather (Myriophyllum aquaticum) in Portugal. Ecology Environment & Conservation 5(3): 171–179.

    Google Scholar 

  • Niinemets, ü, 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research 25(4): 693–714.

    Article  Google Scholar 

  • Pérez-Harguindeguy, N., S. Diaz, E. Gamier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. Bret-Harte, W. Comwell, J. Craine & D. Gurvich, 2013. New handbook for stand-ardised measurement of plant functional traits worldwide. Aus-tralian Journal of Botany 61: 167–234.

    Article  Google Scholar 

  • Pigliucci, M., 2001. Phenotypic Plasticity: Beyond Nature and Nurture. The Johns Hopkings University Press, Baltimore and London.

    Google Scholar 

  • Poorter, H. & O. Nagel, 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Functional Plant Biology 27(6): 595–607.

    Article  CAS  Google Scholar 

  • Pumo, D., D. Caracciolo, F. Viola & L. V. Noto, 2015. Climate change effects on the hydrological regime of small non-perennial river basins. Science of the Total Environment 542(Pt A): 76–92.

    PubMed  Google Scholar 

  • Pyšek, P. & K. Prach, 1993. Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. Journal of Biogeography 20(4): 413–420.

    Article  Google Scholar 

  • Rejmánek, M., 2010. Invasive plants: approaches and predictions. Austral Ecology 25(5): 497–506.

    Article  Google Scholar 

  • Rejmánek, M., D. M. Richardson & P. Pyšek, 2005. Plant invasions and invasibility of plant communities. Vegetation Ecology 20: 332–355.

    Google Scholar 

  • Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51(2): 274–286.

    Article  Google Scholar 

  • Salvucci, M. E. & G. Bowes, 1982. Photosynthetic and photorespiratory responses of the aerial and submerged leaves of Myriophyllum brasiliense. Aquatic Botany 13: 147–164.

    Article  CAS  Google Scholar 

  • Schneider, C., L. R. C. Laize, M. C. Acreman & M. Flörke, 2013. How will climate change modify river flow regimes in Europe? Hydrology & Earth System Sciences Discussions 17(1): 325–339.

    Article  Google Scholar 

  • Shen, N., H. W. Yu, S. Q. Yu, D. Yu & C. H. Liu, 2019. Does soil nutrient heterogeneity improve the growth performance and intraspecific competition of the invasive plant Myriophyllum aquaticum? Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheppard, A., R. Shaw & R. Sforza, 2006. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Research 46(2): 93–117.

    Article  Google Scholar 

  • Shilla, D. & J. Dativa, 2008. Biomass dynamics of charophyte-dominated submerged macrophyte communities in Myall Lake, NSW, Australia. Chemistry & Ecology 24(5): 367–377.

    Article  Google Scholar 

  • Smith, R. G. B. & M. A. Brock, 2007. The ups and downs of life on the edge: the influence of water level fluctuations on biomass allocation in two contrasting aquatic plants. Plant Ecology 188(1): 103–116.

    Article  Google Scholar 

  • Sobrino, E., M. Sanz-Elorza, E. D. Dana & A. González-Moreno, 2002. Invasibility of a coastal strip in NE Spain by alien plants. Journal of Vegetation Science 13(4): 585–594.

    Article  Google Scholar 

  • Sultan, S. E. & F. A. Bazzaz, 1993. Phenotypic plasticity in polygonum persicaria. iii. the evolution of ecological breadth for nutrient environment. Evolution 47(4): 1050–1071.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, D., 1985. Biology and ecology of Myriophyllum aquaticum. Proceedings, First International Symposium on Watermilfoil (Myriophyllum spicatum) and Related Haloragaceae Species, Vancouver, BC: 59–71.

  • Sytsma, M. D. & L. W. J. Anderson, 1993a. Biomass, nitrogen, and phosphorus allocation in parrotfeather (Myriophyllum aquaticum). Journal of Aquatic Plant Management 31(4): 244–248.

    Google Scholar 

  • Sytsma, M. D. & L. W. J. Anderson, 1993b. Nutrient limitation in Myriophyllum aquaticum. Journal of Freshwater Ecology 8(2): 165–176.

    Article  CAS  Google Scholar 

  • Thiébaut, G., 2007. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biological Invasions 9(1): 1–12.

    Article  Google Scholar 

  • Vretare, V., S. E. B. Weisner, J. A. Strand & W. Granéli, 2001. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquatic Botany 69(2): 127–145.

    Article  Google Scholar 

  • Wang, Q., J. Chen, F. Liu & W. Li, 2014. Morphological changes and resource allocation of Zizania latifolia (Griseb.) Stapf in response to different submergence depth and duration. Flora 209(5–6): 279–284.

    Article  Google Scholar 

  • Wang, T., J. T. Hu, L. L. Miao, D. Yu & C. H. Liu, 2016. The invasive stoloniferous clonal plant Alternanthera philoxeroides outperforms its co-occurring non-invasive functional counterparts in heterogeneous soil environments–invasion implications. Scientific Reports 6: 38036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T., J. T. Hu, R. Q. Wang, C. H. Liu & D. Yu, 2018. Tolerance and resistance facilitate the invasion success of Alternanthera philoxeroides in disturbed habitats: a reconsideration of the disturbance hypothesis in the light of phenotypic variation. Environmental and Experimental Botany 153: 135–142.

    Article  CAS  Google Scholar 

  • Webb, J. A., E. M. Wallis & M. J. Stewardson, 2012. A systematic review of published evidence linking wetland plants to water regime components. Aquatic Botany 103: 1–14.

    Article  Google Scholar 

  • Wei, G. W., Y. Chen, X. S. Sun, Y. H. Chen, F. L. Luo & F. H. Yu, 2019. Growth responses of eight wetland species to water level fluctuation with different ranges and frequencies. Plos One 14(7): e0220231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2010a. Comparative effects of water level variations on growth characteristics of Myriophyllum aquaticum. Weed Research 51(4): 386–393.

    Article  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2010b. Comparison of subsurface and foliar herbicide applications for control of Parrotfeather (Myriophyllum aquaticum). Invasive Plant Science & Management 3(3): 262–267.

    Article  CAS  Google Scholar 

  • Wersal, R. M., J. C. Cheshier, J. D. Madsen & P. D. Gerard, 2011. Phenology, starch allocation, and environmental effects on Myriophyllum aquaticum. Aquatic Botany 95(3): 194–199.

    Article  Google Scholar 

  • Xie, D., D. Yu, L. F. Yu & C. H. Liu, 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655(1): 37–47.

    Article  Google Scholar 

  • Xie, D., D. Yu, W. H. You & C. X. Xia, 2013. The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of Myriophyllum aquaticum. Biological Invasions 15(1): 113–123.

    Article  Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. H. Liu & L. G. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53(11): 2256–2263.

    Google Scholar 

  • You, W. H., D. Yu, C. H. Liu, D. Xie & W. Xiong, 2013. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718(1): 27–39.

    Article  Google Scholar 

  • Yu, L. F. & D. Yu, 2009. Responses of the threatened aquatic plant Ottelia alismoides to water level fluctuations. Fundamental and Applied Limnology 174(4): 295–300.

    Article  Google Scholar 

  • Yu, L. F. & D. Yu, 2011. Differential responses of the floating-leaved aquatic plant Nymphoides peltata to gradual versus rapid increases in water levels. Aquatic Botany 94(2): 71–76.

    Article  Google Scholar 

  • Zhang, H. J., R. Q. Wang, W. Xiao, D. Ning, X. L. Ge, Y. D. Du & L. Jian, 2015. Recurrent water level fluctuation alleviates the effects of submergence stress on the invasive riparian plant Alternanthera philoxeroides. Plos ONE 10(6): e0129549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, J., L. D. Zheng, X. Pan, W. Li, X. M. Kang, J. Li, Y. Ning, M. X. Zhang & L. J. Cui, 2018. Hydrological conditions affect the interspecific interaction between two emergent wetland species. Frontiers in Plant Science 8: 1–9.

    Google Scholar 

  • Zhu, X. G., S. P. Long & D. R. Ort, 2010. Improving photosynthetic efficiency for greater Yield. Annual Review of Plant Biology 61(1): 235–261.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support from the Special Foundation of National Science and Technology Basic Research (2013FY112300), the National Natural Science Foundation of China (31900281), and the China Postdoctoral Science Foundation (2019M650634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, D., Pulzatto, M.M. et al. Moderate hydrological disturbance and high nutrient substrate enhance the performance of Myriophyllum aquaticum. Hydrobiologia 848, 2331–2343 (2021). https://doi.org/10.1007/s10750-020-04397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04397-6

Keywords

Navigation