Skip to main content

Advertisement

Log in

Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration

  • ECOLOGY OF SHALLOW LAKES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this review we describe patterns and mechanisms by which habitat complexity is crucial for the functioning of shallow lakes and ponds, and for the abundance and diversity of biological communities in these ecosystems. Habitat complexity is affected by processes acting at different spatial scales, from the landscape to the ecosystem level (i.e., morphometric attributes) that generate different complexities, determining the potential for organisms to succeed and processes to occur, such as energy and nutrient transfer, and fluxes of greenhouse gases, among others. At the local scale, the three major habitats, pelagic, littoral, and benthic, are characterised by different degrees of structural complexity and a particular set of organisms and processes. Direct and indirect effects of changes in within-lake habitat complexity can either hinder or promote regime shifts in these systems. We also review several anthropogenic pressures (eutrophication, urbanisation, introduction of exotic species, and climate change) that decrease lake resilience through changes in habitat complexity and strategies for habitat complexity restoration. Overall, we emphasize the need to preserve and/or restore habitat complexity as key challenges to account for ecosystem integrity, maintenance of local/regional biodiversity, and for the provision of crucial ecosystem services (e.g., biodiversity, self-purification, and carbon sequestration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Meerhoff (2006)

Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Agostinho, A. A., L. C. Gomes & H. J. Ferreira Jr., 2003. Relationship between aquatic macrophytes and fish fauna. In Thomaz, S. M. & L. M. Bini (eds), Ecology and Management of Aquatic Macrophytes EDUEM, Maringá: 261–279. (In Portuguese).

    Google Scholar 

  • Andersson, B., 2001. Macrophyte development and habitat characteristics in Sweden’s large lakes. AMBIO 30: 503–513.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield Jr., 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.

    Article  Google Scholar 

  • Bai, G., Y. Zhang, P. Yan, W. Yan, L. Kong, L. Wang, C. Wang, Z. Liu, B. Liu, J. Ma, J. Zuo, J. Li, J. Bao, S. Xia, Q. Zhou, D. Xu, F. He & Z. Wu, 2020. Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: submerged macrophyte distribution influenced by environmental variables. Water Research 186: 116379.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.

    Article  Google Scholar 

  • Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwater Biology 22: 71–87.

    Article  Google Scholar 

  • Bayley, S. E., A. S. Wong & J. E. Thompson, 2013. Effects of agricultural encroachment and drought on wetlands and shallow lakes in the boreal transition zone of Canada. Wetlands 33: 17–28.

    Article  Google Scholar 

  • Beaulieu, J. J., T. DelSontro & J. A. Downing, 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications 10: 1375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birch, S. & J. McCaskie, 1999. Shallow urban lakes: a challenge for lake management. Hydrobiologia 395–396: 365–377.

    Article  Google Scholar 

  • Boll, T., D. Balayla, F. Ø. Andersen & E. Jeppesen, 2012. Can artificial plant beds be used to enhance macroinvertebrate food resources for perch (Perca fluviatilis L.) during the initial phase of lake restoration by cyprinid removal? Hydrobiologia 679: 175–186.

    Article  Google Scholar 

  • Bolpagni, R., 2021. Towards global dominance of invasive alien plants in freshwater ecosystems: the dawn of the Exocene? Hydrobiologia 848: 2259–2279.

    Article  Google Scholar 

  • Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascón & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography 55: 1697–1711.

    Article  Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Littoral zone structures as refugia for Daphnia against fish predation. Limnology and Oceanography 46: 230–237.

    Article  Google Scholar 

  • Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting littoral zones. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Carpenter, S. R., E. H. Stanley & M. J. Vander Zanden, 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environmental Resources 36: 75–99.

    Article  Google Scholar 

  • Chaichana, R., R. Leah & B. Moss, 2011. Seasonal impact of waterfowl on communities of macrophytes in a shallow lake. Aquatic Botany 95: 39–44.

    Article  Google Scholar 

  • Chambers, P. A., 1987. Nearshore occurrence of submerged aquatic macrophytes in relation to wave action. Canadian Journal of Fisheries and Aquatic Sciences 44: 1666–1669.

    Article  Google Scholar 

  • Chen, K. N., C. H. Bao & W. B. Zhou, 2009. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment. Ecological Engineering 35: 1646–1655.

    Article  Google Scholar 

  • Clemente, J. M., T. Boll, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen, E. Jeppesen & M. Meerhoff, 2019. Role of plant architecture on littoral macroinvertebrates in temperate and subtropical shallow lakes: a comparative manipulative field experiment. Limnetica 38: 759–772.

    Article  Google Scholar 

  • Colina, M., Kosten, S., Silvera, N., Clemente, J.M. & Meerhoff, M., 2021. Carbon fluxes in subtropical shallow lakes: contrasting regimes differ in CH4 emissions. Hydrobiologia. 1–18. https://doi.org/10.1007/s10750-021-04752-1

  • Colina, M., M. Meerhoff, G. Pérez, A. J. Veraart, P. Bodelier, A. van der Horst & S. Kosten, 2021. Trophic and non-trophic effects of fish and macroinvertebrates on carbon emissions. Freshwater Biology 66: 1831–1845.

    Article  CAS  Google Scholar 

  • Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Böhm, 2014. Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51.

    Article  PubMed  Google Scholar 

  • Cooke, G. D., E. B. Welch, S. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs, CRC Press, Boca Raton.

    Google Scholar 

  • Coppens, J., D. Trolle, E. Jeppesen & M. Beklioğlu, 2020. The impact of climate change on a Mediterranean shallow lake: insights based on catchment and lake modelling. Regional Environmental Change 20: 62.

    Article  Google Scholar 

  • Crisci, C., R. Terra, J. P. Pacheco, B. Ghattas, M. Bidegain, G. Goyenola, J. J. Lagomarsino, G. Méndez & N. Mazzeo, 2017. Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events. Ecological Modelling 360: 80–93.

    Article  CAS  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Davidson, T. A., J. Audet, J. C. Svenning, T. L. Lauridsen, M. Søndergaard, F. Landkildehus, S. E. Larsen & E. Jeppesen, 2015. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biology 21: 4449–4463.

    Article  PubMed  Google Scholar 

  • Davidson, T. A., J. Audet, E. Jeppesen, F. Landkildehus, T. L. Lauridsen, M. Søndergaard & J. Syväranta, 2018. Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nature Climate Change 8: 156–160.

    Article  CAS  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  CAS  Google Scholar 

  • de Tezanos Pinto, P., L. Allende & I. O’Farrell, 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: an experimental approach. Journal of Plankton Research 29: 47–56.

    Article  Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van der Gucht, C. Pérez-Martínez, T. L. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960–R967.

    Article  CAS  PubMed  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Ersoy, Z., U. Scharfenberger, D. L. Baho, T. Bucak, T. Feldmann, J. Hejzlar, E. E. Levi, A. Mahdy, T. Nõges, E. Papastergiadou, K. Stefanidis, M. Šorf, M. Søndergaard, C. Trigal, E. Jeppesen & M. Beklioğlu, 2020. Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: a pan-European mesocosm experiment. Global Change Biology 26: 6831–6851.

    Article  PubMed  Google Scholar 

  • Fahrig, L., 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography 40: 1649–1663.

    Article  Google Scholar 

  • Fontanarrosa, M. S., G. Chaparro, P. de Tezanos Pinto, P. Rodríguez & I. O’Farrell, 2010. Zooplankton response to the environmental conditions engineered by free-floating plants. Hydrobiologia 646: 231–242.

    Article  CAS  Google Scholar 

  • Forbes, S. A., 1887. The lake as a microcosm. Bulletin of the Peoria Scientific Association 77–87, reprinted as Forbes (1925). Illinois Natural History Survey Bulletin 15: 537–550.

    Article  Google Scholar 

  • Free, G., A. G. Solimini, B. Rossaro, L. Marziali, R. Giacchini, B. Paracchini, M. Ghiani, S. Vaccaro, B. M. Gawlik, R. Fresner, G. Santner, M. Schönhuber & A. C. Cardoso, 2009. Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633: 123–136.

    Article  CAS  Google Scholar 

  • Gao, H., X. Qian, H. Wu, H. Li, H. Pan & C. Han, 2017. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body: a case study of Gonghu Bay, Lake Taihu. Ecological Engineering 102: 15–23.

    Article  Google Scholar 

  • Gao, Y., C. Yin, Y. Zhao, Z. Liu, P. Liu, W. Zhen, Y. Hu, J. Yu, Z. Wang & B. Guan, 2020. Effects of diversity, coverage and biomass of submerged macrophytes on nutrient concentrations, water clarity and phytoplankton biomass in two restored shallow lakes. Water 12: 1425.

    Article  CAS  Google Scholar 

  • Genkai-Kato, M., 2007. Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity. Ecology Letters 10: 105–114.

    Article  PubMed  Google Scholar 

  • Gherardi, F. & P. Acquistapace, 2007. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biology 52: 1249–1259.

    Article  Google Scholar 

  • González-Sagrario, M. A. & E. Balseiro, 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biology 55: 2153–2166.

    Article  Google Scholar 

  • González-Sagrario, M. A., E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053.

    Article  Google Scholar 

  • Grutters, B. M. C., B. J. A. Pollux, W. C. E. P. Verberk & E. S. Bakker, 2015. Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants. PLoS ONE. 10(4): e0124455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hampton, S. E., S. C. Fradkin, P. R. Leavitt & E. E. Rosenberger, 2011. Disproportionate importance of nearshore habitat for the food web of a deep oligotrophic lake. Marine and Freshwater Research 62: 350–358.

    Article  CAS  Google Scholar 

  • Havens, K., H. Paerl, E. Phlips, M. Zhu, J. Beaver & A. Srifa, 2016. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water 8: 229.

    Article  CAS  Google Scholar 

  • Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, A. Melzer, J. Poltz, S. Sandrock, E. M. Scharf, S. Schneider & K. van de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes: a guideline and state of the art in Germany. Limnologica 36: 155–171.

    Article  CAS  Google Scholar 

  • Hoffmann, C. C., D. Zak, B. Kronvang, C. Kjaergaard, M. V. Carstensen & J. Audet, 2020. An overview of nutrient transport mitigation measures for improvement of water quality in Denmark. Ecological Engineering 155: 105863.

    Article  Google Scholar 

  • Horppila, J. & L. Nurminen, 2002. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biology 46: 1447–1455.

    Article  Google Scholar 

  • Horppila, J. & L. Nurminen, 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research 37: 4468–4474.

    Article  CAS  PubMed  Google Scholar 

  • Horppila, J. & L. Nurminen, 2005. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia 545: 167–175.

    Article  CAS  Google Scholar 

  • Hughes, R. M. & R. L. Vadas, 2021. Agricultural effects on streams and rivers: a western USA focus. Water 13: 1901.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95: 137–145.

    Article  Google Scholar 

  • Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodó & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584: 179–189.

    Article  CAS  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García, S. L. Amsinck, J. C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is the key factor for dominance of small-bodied zooplankton in warm lakes: evidence from lakes, fish exclosures and surface sediment. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • IPBES, 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES secretariat, Bonn.

    Google Scholar 

  • Jabłońska, E., M. Wiśniewska, P. Marcinkowski, M. Grygoruk, C. R. Walton, D. Zak, C. C. Hoffmann, S. E. Larsen, M. Trepel & W. Kotowski, 2020. Catchment-scale analysis reveals high cost-effectiveness of wetland buffer zones as a remedy to non-point nutrient pollution in north-eastern Poland. Water 12: 629.

    Article  CAS  Google Scholar 

  • Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.

    Google Scholar 

  • Jana, D. & N. Bairagi, 2014. Habitat complexity, dispersal and metapopulations: macroscopic study of a predator–prey system. Ecological Complexity 17: 131–139.

    Article  Google Scholar 

  • Janes, R. A., J. W. Eaton & K. Hardwick, 1996. The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia 340: 23–26.

    Article  Google Scholar 

  • Janssen, A. B. G., S. Hilt, S. Kosten, J. J. M. de Klein, H. W. Paerl & D. B. Van de Waal, 2021. Shifting states, shifting services: linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology 66: 1–12.

    Article  Google Scholar 

  • Jennings, M. J., M. A. Bozek, G. R. Hatzenbeler, E. E. Emmons & M. D. Staggs, 1999. Cumulative effects of incremental shoreline habitat modification on fish assemblages in north temperate lakes. North American Journal of Fisheries Management 19: 18–27.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen, 1998. The Structuring Role of Submerged Macrophytes in Lakes, Springer-Verlag, New York.

    Book  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction- some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Ozkan, H. S. Jensen, D. Trolle, F. Landkildehus, F. Starling, S. E. Larsen, X. Lazzaro & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication- recent advances and future challenges. Advances in Ecological Research 47: 411–488.

    Article  Google Scholar 

  • Jeppesen, E., D. Trolle, T. A. Davidson, R. Bjerring, M. Søndergaard, L. S. Johansson, T. L. Lauridsen, A. Nielsen, S. E. Larsen & M. Meerhoff, 2016. Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state. Hydrobiologia 778(1): 33–44.

    Article  CAS  Google Scholar 

  • Jeppesen, E., D. E. Canfield, R. W. Bachmann, M. Søndergaard, K. E. Havens, L. S. Johansson, T. L. Lauridsen, T. Sh, R. P. Rutter & G. Warren, 2020. Toward predicting climate change effects on lakes: a comparison of 1656 shallow lakes from Florida and Denmark reveals substantial differences in nutrient dynamics, metabolism, trophic structure, and top-down control. Inland Waters 10: 197–211.

    Article  CAS  Google Scholar 

  • Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  • Kaufmann, P. R., R. M. Hughes, T. R. Whittier, S. A. Bryce & S. G. Paulsen, 2014. Relevance of lake physical habitat indices to fish and riparian birds. Lake and Reservoir Management 30: 177–191.

    Article  Google Scholar 

  • Kornijów, R., G. J. Measey & B. Moss, 2016. The structure of the littoral: effects of waterlily density and perch predation on sediment and plant-associated macroinvertebrate communities. Freshwater Biology 61: 32–50.

    Article  Google Scholar 

  • Kosten, S. & M. Meerhoff, 2014. Lake Communities. Encyclopedia of Life Sciences, John Wiley & sons, Chichester.

    Google Scholar 

  • Kosten, S., E. Jeppesen, V. L. M. Huszar, N. Mazzeo, E. van Nes, E. T. H. M. Peeters & M. Scheffer, 2011. Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology 56: 1540–1553.

    Article  Google Scholar 

  • Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Nõges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  • Kosten, S., M. Piñeiro, E. Goede, J. de Klein, L. P. Lamers & K. Ettwig, 2016. Fate of methane in aquatic systems dominated by free-floating plants. Water Research 104: 200–207.

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko, K. E., E. D. Dibble, A. A. Agostinho, G. Cantanhede & R. Fugi, 2010. Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants. Hydrobiologia 638: 245–253.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Laanbroek, H. J., 2009. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes: a mini-review. Annals of Botany 105: 141–153.

    Article  PubMed Central  CAS  Google Scholar 

  • Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 161–176.

    Article  Google Scholar 

  • Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41: 794–798.

    Article  Google Scholar 

  • Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Søndergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18: 2283–2294.

    Article  Google Scholar 

  • Lauridsen, T. L., H. Sandsten & P. H. Møller, 2003. The restoration of a shallow lake by introducing Potamogeton spp. The impact of waterfowl grazing. Lakes and Reservoirs: Research and Management 8: 177–187.

    Article  Google Scholar 

  • Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.

    Article  Google Scholar 

  • Loreau, M., N. Mouquet & A. Gonzalez, 2003. Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences 100(22): 12765–12770.

    Article  CAS  Google Scholar 

  • Lucena-Moya, P. & I. C. Duggan, 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45: 279–287.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Marklund, O., H. Sandsten, L.-A. Hansson & I. Blindow, 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshwater Biology 47: 2049–2059.

    Article  Google Scholar 

  • McCrackin, M.L., Jones, H.P., Jones, P.C. & Moreno‐Mateos, D., 2017. Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta‐analysis. Limnology and Oceanography. 62(2): 507–518

  • Meerhoff, M., 2006. The structuring role of macrophytes on trophic dynamics of shallow lakes under a climate warming scenario. PhD Thesis, Aarhus University, Aarhus.

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira-de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007a. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007b. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioğlu, S. Brucet, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research 46: 259–349.

    Article  Google Scholar 

  • Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1326.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being. Current State and Trends, Island Press, Washington DC.

    Google Scholar 

  • Moi, D. A., D. C. Alves, P. A. P. Antiqueira, S. M. Thomaz, F. Teixeira de Mello, C. C. Bonecker, L. C. Rodrigues, R. Garcia-Rios & R. P. Mormul, 2021. Ecosystem shift from submerged to floating plants simplifying the food web in a tropical shallow lake. Ecosystems 24: 628–639.

    Article  Google Scholar 

  • Moomaw, W. R., G. L. Chmura, G. T. Davies, C. M. Finlayson, B. A. Middleton, S. M. Natali, J. E. Perry, N. Roulet & A. E. Sutton-Grier, 2018. Wetlands in a changing climate: science, policy and management. Wetlands 38: 183–205.

    Article  Google Scholar 

  • Morales-Williams, A. M., A. D. Wanamaker, C. J. Williams & J. A. Downing, 2021. Eutrophication drives extreme seasonal CO2 flux in lake ecosystems. Ecosystems 24: 434–450.

    Article  CAS  Google Scholar 

  • Moss, B., 1998. Ecology of Fresh Waters: Man and Medium, Past to Future, 3rd ed. Wiley, Singapore

    Google Scholar 

  • Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of a nutrient-rich inflow. Verhandlungen Der Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 568–572.

    Google Scholar 

  • Moss, B., J. Madgwick & G. Phillips, 1996. A Guide to the Restoration of Nutrient-Enriched Shallow Lakes, Broads Authority, Norwich.

    Google Scholar 

  • Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. De Meester, H. Paerl & M. Scheffer, 2011. Allied attack: climate change and nutrient pollution. Inland Waters 1: 101–105.

    Article  Google Scholar 

  • Muthukrishnan, R. & D. J. Larkin, 2020. Invasive species and biotic homogenization in temperate aquatic plant communities. Global Ecology and Biogeography 29: 656–667.

    Article  Google Scholar 

  • Muthukrishnan, R., N. Hansel-Welch & D. J. Larkin, 2018. Environmental filtering and competitive exclusion drive biodiversity-invasibility relationships in shallow lake plant communities. Journal of Ecology 106: 2058–2070.

    Article  Google Scholar 

  • Naiman, R. J., R. E. Bilby & P. A. Bisson, 2000. Riparian ecology and management in the Pacific coastal rain forest. BioScience 50(11): 996–1011.

    Article  Google Scholar 

  • Netten, J. J. C., G. H. P. Arts, R. Gylstra, E. H. van Nes, M. Scheffer & R. M. M. Roijackers, 2010. Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177: 125–132.

    Article  Google Scholar 

  • Nurminen, L. & J. Horppila, 2002. A diurnal study on the distribution of filter feeding zooplankton: effect of emergent macrophytes, pH and lake trophy. Aquatic Sciences 64: 198–206.

    Article  CAS  Google Scholar 

  • Oertli, B. & K. M. Parris, 2019. Toward management of urban ponds for freshwater biodiversity. Ecosphere 10: e02810.

    Article  Google Scholar 

  • O’Farrell, I., P. De Tezanos Pinto, P. L. Rodriguez, G. Chaparro & H. N. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.

    Article  Google Scholar 

  • Pacheco, F. S., F. Roland & J. A. Downing, 2014. Eutrophication reverses whole-lake carbon budgets. Inland Waters 4: 41–48.

    Article  CAS  Google Scholar 

  • Padial, A. A., S. M. Thomaz & A. A. Agostinho, 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624: 161–170.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & V. J. Paul, 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, M. A., H. L. Menninger & E. Bernhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.

    Article  Google Scholar 

  • Paracuellos, M. & J. L. Tellería, 2004. Factors affecting the distribution of a waterbird community: the role of habitat configuration and bird abundance. Waterbirds 27: 446–453.

    Article  Google Scholar 

  • Pekcan-Hekim, Z., L. Nurminen, T. Ojala, M. Olin, J. Ruuhijärvi & J. Horppila, 2010. Reversed diel horizontal migration of fish: turbidity versus structural complexity as refuge. Journal of Freshwater Ecology 25: 649–656.

    Article  Google Scholar 

  • Persson, L. & P. Eklöv, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.

    Article  Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Phillips, G. L., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135: 37–45.

    Article  Google Scholar 

  • Pianka, E. R., 2000. Evolutionary Ecology, Benjamin Cummings, San Francisco.

    Google Scholar 

  • Rahel, F. J. & J. D. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.

    Article  PubMed  Google Scholar 

  • Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.

    Article  CAS  Google Scholar 

  • Rigosi, A., C. C. Carey, B. W. Ibelings & J. D. Brookes, 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnology and Oceanography 59: 99–114.

    Article  Google Scholar 

  • Rinke, K., P. S. Keller, X. Kong, D. Borchardt & M. Weitere, 2019. Ecosystem services from inland waters and their aquatic ecosystems. In Schröter, M., A. Bonn, S. Klotz, R. Seppelt & C. Baessler (eds), Atlas of Ecosystem Services. Springer, Cham.

    Google Scholar 

  • Roijackers, R., S. Szabo & M. Scheffer, 2004. Experimental analysis of the competition between algae and duckweed. Archiv für Hydrobiologie 160: 401–412.

    Article  Google Scholar 

  • Rooney, D. J. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.

    Article  Google Scholar 

  • Salgado, J., C. D. Sayer, S. J. Brooks, T. A. Davidson & B. Okamura, 2018. Eutrophication erodes inter-basin variation in macrophytes and co-occurring invertebrates in a shallow lake: combining ecology and palaeoecology. Journal of Paleolimnology 60: 311–328.

    Article  Google Scholar 

  • Salgado, J., M. I. Vélez, L. C. Caceres-Torres, J. A. Villegas-Ibagon, L. C. Bernal-Gonzalez, L. Lopera-Congote, N. M. Martinez-Medina & C. González-Arango, 2019. Long-term habitat degradation drives neotropical macrophyte species loss while assisting the spread of invasive plant species. Frontiers in Ecology and Evolution 7: 140.

    Article  Google Scholar 

  • Salgado, J., C. D. Sayer, N. Willby, A. G. Baker, B. Goldsmith, S. McGowan, T. A. Davidson, P. Bexell, I. R. Patmore & B. Okamura, 2021. Habitat heterogeneity enables spatial and temporal coexistence of native and invasive macrophytes in shallow lake landscapes. River Research and Applications. https://doi.org/10.1002/rra.3839.

    Article  Google Scholar 

  • Sass, G. G., J. F. Kitchell, S. R. Carpenter, T. R. Hrabik, A. E. Marburg & M. G. Turner, 2006. Fish community and food web responses to a whole-lake removal of coarse woody habitat. Fisheries 31: 321–330.

    Article  Google Scholar 

  • Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. M. Clemente, D. Fabián & S. Bonilla, 2001. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquatic Conservation: Marine and Freshwater Ecosystems 11: 31–44.

    Article  Google Scholar 

  • Scheffer, M. & R. J. De Boer, 1995. Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76: 2270–2277.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. Roijackers & R. Franken, 2003. Floating plant dominance as an alternative stable state. Proceedings of the National Academy of Sciences of USA 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Scheffer, M., G. J. Van Geest, K. Zimmer, E. Jeppesen, M. Søndergaard, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.

    Article  Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Article  Google Scholar 

  • Schou, M. O., C. Risholt, T. L. Lauridsen, M. Søndergaard, P. Grønkjær & E. Jeppesen, 2009. Habitat selection of zooplankton in a clear and a turbid shallow lake: effects of introducing artificial plants as refuge against predation. Freshwater Biology 54: 1520–1531.

    Article  Google Scholar 

  • Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants, Edward Arnold Publishers, London

    Google Scholar 

  • Short, F. T., S. Kosten, P. A. Morgan, S. Malone & G. E. Moore, 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.

    Article  Google Scholar 

  • Skov, C. & S. Berg, 1999. Utilization of natural and artificial habitats by YOY pike in a biomanipulated lake. Hydrobiologia 408–409: 115–122.

    Article  Google Scholar 

  • Snickars, M., A. Sandstrom & J. Mattila, 2004. Antipredator behaviour of 0+ year Perca fluviatilis: effect of vegetation density and turbidity. Journal of Fish Biology 65: 1604–1613.

    Article  Google Scholar 

  • Søndergaard, M., J. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509: 135–145.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. Jensen, 2005. Pond or lake: does it make any difference? Archiv für Hydrobiologie 162: 143–165.

    Article  CAS  Google Scholar 

  • St. Pierre, J. I. & K. E. Kovalenko, 2014. Effect of habitat complexity attributes on species richness. Ecosphere 5: 22.

    Article  Google Scholar 

  • Stephen, D., B. Moss & G. Phillips, 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342–343: 27–34.

    Article  Google Scholar 

  • Stewart, T. W., J. G. Miner & R. L. Lowe, 1998. Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell-generated habitat. Journal of the North American Benthological Society 17: 81–94.

    Article  Google Scholar 

  • Stouffer, D. B. & J. Bascompte, 2011. Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences 108: 3648–3652.

    Article  CAS  Google Scholar 

  • Sun, H., X. Lu, R. Yu, J. Yang, X. Liu, Z. Cao, Z. Zhang, M. Li & Y. Geng, 2021. Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai. Water Research 201: 117363.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi, H., S. Nakano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Tavsanoğlu, Ü. N., A. I. Çakıroğlu, S. Erdoğan, M. Meerhoff, E. Jeppesen & M. Beklioğlu, 2012. Sediment -not plants -offer the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: an experimental demonstration. Freshwater Biology 57: 795–802.

    Article  Google Scholar 

  • Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.

    Article  CAS  Google Scholar 

  • Thayne, M. W., B. M. Kraemer, J. P. Mesman, B. W. Ibelings & R. Adrian, 2021. Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms. Limnology and Oceanography. https://doi.org/10.1002/lno.11859.

    Article  Google Scholar 

  • Thomaz, S.M. & L. M. Bini, 1998. Ecologia e manejo de macrófitas aquáticas em reservatórios.

  • Thomaz, S. M. & E. R. da Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Timms, R. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

    Article  Google Scholar 

  • Tokeshi, M. & S. Arakaki, 2012. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685: 27–47.

    Article  Google Scholar 

  • Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.

    Article  Google Scholar 

  • van Nes, E. H. & M. Scheffer, 2005. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86: 1797–1807.

    Article  Google Scholar 

  • Vander Zanden, M. J. & Y. Vadeboncoeur, 2020. Putting the lake back together 20 years later: what in the benthos have we learned about habitat linkages in lakes? Inland Waters 10: 305–321.

    Article  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183–206.

    Article  PubMed  Google Scholar 

  • Walton, C. R., D. Zak, J. Audet, R. J. Petersen, J. Lange, C. Oehmke, W. Wichtmann, J. Kreyling, M. Grygoruk, E. Jabłońska, W. Kotowski, M. M. Wiśniewska, R. Ziegler & C. C. Hoffmann, 2020. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Science of the Total Environment 727: 138709.

    Article  CAS  PubMed  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  PubMed  Google Scholar 

  • Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.

    Article  Google Scholar 

  • Wetzel, R. G., 1990. Land-water interfaces: metabolic and limnological regulators. Verhandlungen Des International Limnologie 24: 6–24.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, Academic Press, New York.

    Google Scholar 

  • Yamamoto, K. C., C. E. de Carvalho Freitasa, J. Zuanonb & L. E. Hurd, 2014. Fish diversity and species composition in small-scale artificial reefs in Amazonian floodplain lakes: refugia for rare species? Ecological Engineering 67: 165–170.

    Article  Google Scholar 

  • Ye, C., C. H. Li, H. C. Yu, X. F. Song, G. Y. Zou & J. Liu, 2011. Study on ecological restoration in near shore zone of a eutrophic lake; Wuli Bay, Taihu Lake. Ecological Engineering 37: 1434–1437.

    Article  Google Scholar 

  • Yu, J., Z. Liu, K. Li, F. Chen, B. Guan, Y. Hu, P. Zhong, Y. Tang, X. Zhao, H. He, H. Zeng & E. Jeppesen, 2016. Restoration of shallow lakes in subtropical and tropical China: response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water 8: 438.

  • Zagarese, H. E., M. D. Á. González Sagrario, D. Wolf-Gladrow, P. Nõges, T. Nõges, K. Kangur, S.-I.S. Matsuzaki, A. Kohzu, M. J. Vanni, D. Özkundakci, S. A. Echaniz, A. Vignatti, F. Grosman, P. Sanzano, B. Van Dam & L. B. Knoll, 2021. Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes. Water Research 190: 116715.

    Article  CAS  PubMed  Google Scholar 

  • Zehnsdorf, A., A. Hussner, F. Eismann, H. Rönicke & A. Melzer, 2015. Management options of invasive Elodea nuttallii and Elodea canadensis. Limnologica 51: 110–117

  • Zeng, L., F. He, Z. Dai, D. Xu, B. Liu, Q. Zhou & Z. Wu, 2017. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecological Engineering 106: 578–587.

    Article  Google Scholar 

  • Zhang, Z., Z. Wang, Z. Zhang, J. Zhang, J. Guo, E. Li, X. Wang, H. Liu & S. Yan, 2016. Effects of engineered application of Eichhornia crassipes on the benthic macroinvertebrate diversity in Lake Dianchi, an ultra-eutrophic lake in China. Environmental Science and Pollution Research 23: 8388–8397.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, D., Y. Wu, N. Wu, H. Chen, Y. He, Y. Zhang, C. Peng & Q. A. Zhu, 2015. Nitrous oxide emission from infralittoral zone and pelagic zone in a shallow lake: Implications for whole lake flux estimation and lake restoration. Ecological Engineering 82: 368–375.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the graphical help of Tinna Christensen (Aarhus University). We also thank the constructive comments by two anonymous reviewers. MM acknowledges the support of ANII (National Agency for Research and Innovation of Uruguay) and PEDECIBA (Program for the Development of Basic Sciences, Uruguay). MM is partly supported by the project funded by the Sectorial Commission of Scientific Research of UDELAR, CSIC I+D 511 grant (Uruguay) and the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 869296—The PONDERFUL Project. MAGS thanks the support by Instituto de Investigaciones Marinas y Costeras (IIMYC)-Universidad Nacional de Mar del Plata, CONICET and by MINCyT (Ministry of Science, Technology and Innovation), PICT 2016-378.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MM conceptualized the study, MM and MAGS conducted literature review and wrote the article.

Corresponding author

Correspondence to Mariana Meerhoff.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: José L. Attayde, Renata F. Panosso, Vanessa Becker, Juliana D. Dias & Erik Jeppesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meerhoff, M., de los Ángeles González-Sagrario, M. Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia 849, 3737–3760 (2022). https://doi.org/10.1007/s10750-021-04771-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04771-y

Keywords

Navigation