Skip to main content

Advertisement

Log in

Examining the diet of meiofauna: a critical review of methodologies

  • MEIOFAUNA IN FRESHWATER ECOSYSTEMS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Meiofaunal organisms are diverse, and so is their diet comprising bacteria, fungi, micro-algae, flagellates, ciliates, and other meiofauna. Studies have inferred diet from correlative evidences, observations of feeding or gut contents. Incubation experiments have also helped to link meiofauna’s role to microbially mediated ecosystem processes, reporting in most cases beneficial effects on microbial activity. Nevertheless, our knowledge of meiofauna’s trophic ecology still lags far behind that of other aquatic fauna (i.e. zooplankton, macroinvertebrates, vertebrates), probably because the small-size and the cryptic nature of the meiofauna becomes an issue when it comes to detect their isotopic or lipid composition. Here, we provide a critical review of diverse methodologies used while examining meiofaunal diets. Observation of feeding, incubation experiments, gut content analyses, calorimetry, stable isotopic and fatty acid analyses are very helpful and some modifications of standard materials and methods can help reduce the time-consuming sorting of individuals. Other analytic tools used by microbial ecologists like compound-specific stable isotopic analysis, DNA-stable isotopic probing, confocal laser scanning microscopy, coherent anti-stokes Raman spectrometry and nanoscale secondary ion mass spectrometry have the potential to unravel hidden trophic channels between meiofauna and microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akoto, L., F. Stellaard, H. Irth, R. J. J. Vreuls & R. Pel, 2008. Improved fatty acid detection in micro-algae and aquatic meiofauna species using direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry. Journal of Chromatography A 1186: 254–261.

    Article  CAS  PubMed  Google Scholar 

  • Arts, M. T., M. T. Brett & M. Kainz, 2009. Lipids in Aquatic Ecosystems. Springer, New York.

    Google Scholar 

  • Bec, A., M.-E. Perga, A. Koussoroplis, G. Bardoux, C. Desvilettes, G. Bourdier & A. Mariotti, 2011. Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution 2: 651–659.

    Article  Google Scholar 

  • Bell, M. V. & D. R. Tocher, 2009. Biosynthesis of Polyunsaturated Fatty Acids in Aquatic Ecosystems: General Pathways and New Directions Lipids in Aquatic Ecosystems. Springer, New York: 211–236.

    Google Scholar 

  • Bell, S. S., 1988. Experimental techniques. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington, DC: 169–180.

    Google Scholar 

  • Bergtold, M., V. Gunther & W. Traunspurger, 2005. Is there competition among ciliates and nematodes? Freshwater Biology 50: 1351–1359.

    Article  Google Scholar 

  • Bonaglia, S., F. J. A. Nascimento & M. Bartoli, 2014. Meiofauna increases bacterial denitrification in marine sediments. Nature Communications 5: 5133.

    Article  CAS  PubMed  Google Scholar 

  • Borchardt, M. A. & T. L. Bott, 1995. Meiofaunal grazing of bacteria and algae in a Piedmont stream. Journal of the North American Benthological Society 14: 278–298.

    Article  Google Scholar 

  • Boschker, H. T. S., W. De Graaf, M. Köster, L.-A. Meyer-Reil & T. E. Cappenberg, 2001. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiology Ecology 35: 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Braeckman, U., P. Provoost, K. Sabbe, K. Soetaert, J. J. Middelburg, M. Vincx & J. Vanaverbeke, 2015. Temporal dynamics in a shallow coastal benthic food web: insights from fatty acid biomarkers and their stable isotopes. Marine Environmental Research 108: 55–68.

    Article  CAS  PubMed  Google Scholar 

  • Braeckman, U., F. Janssen, G. Lavik, M. Elvert, H. Marchant, C. Buckner, C. Bienhold & F. Wenzhöfer, 2018. Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus. Biogeosciences 15: 6537–6557.

    Article  CAS  Google Scholar 

  • Buffan-Dubau, E. & K. R. Carman, 2000. Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnology and Oceanography 45: 381–395.

    Article  CAS  Google Scholar 

  • Buffan-Dubau, E., R. de Wit & J. Castel, 1996. Feeding selectivity of the harpacticoid copepod Canuella perplexa in benthic muddy environments demonstrated by HPLC analyses of chlorin and carotenoid pigments. Marine Ecology Progress Series 137: 71–82.

    Article  CAS  Google Scholar 

  • Burnett, C. M. L. & J. L. Grobe, 2013. Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice. American Journal of Physiology 305: 916–924.

    Article  CAS  Google Scholar 

  • Caramujo, M. J., H. T. Boschker & W. Admiraal, 2008. Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshwater Biology 53: 77.

    CAS  Google Scholar 

  • Carman, K. R. & B. Fry, 2002. Small-sample methods for δ13C and δ15 N analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques. Marine Ecology Progress Series 240: 85–92.

    Article  CAS  Google Scholar 

  • Cnudde, C., A. Willems, K. Van Hoorde, W. Vyverman, T. Moens & M. De Troch, 2011. Effect of food preservation on the grazing behavior and on the gut flora of the harpacticoid copepod Paramphiascella fulvofasciata. Journal of Experimental Marine Biology and Ecology 407: 63–69.

    Article  Google Scholar 

  • Cnudde, C., T. Moens, E. Werbrouck, G. Lepoint, D. Van Gansbeke & M. De Troch, 2015. Trophodynamics of estuarine intertidal harpacticoid copepods based on stable isotope composition and fatty acid profiles. Marine Ecology Progress Series 524: 225–239.

    Article  CAS  Google Scholar 

  • Crotty, F. V., S. M. Adl, R. P. Blackshaw & P. J. Murray, 2012. Using stable isotopes to differentiate trophic feeding channels within soil food webs. Journal of Eukaryotic Microbiology 59: 520–526.

    Article  PubMed  Google Scholar 

  • Degen, R. & S. Faulwetter, 2019. The arctic traits database—a repository of arctic benthic invertebrate traits. Earth System Science Data 11: 301–322.

    Article  Google Scholar 

  • De Mesel, I., S. Derycke, T. Moens, K. Van der Gucht, M. Vincx & J. Swings, 2004. Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environmental Microbiology 6: 733–744.

    Article  PubMed  Google Scholar 

  • De Mesel, I., S. Derycke, J. Swings, M. Vincx & T. Moens, 2006. Role of nematodes in decomposition processes: does within-trophic group diversity matter? Marine Ecology Progress Series 321: 157–166.

    Article  Google Scholar 

  • De Troch, M., M. B. Steinarsdottir, V. Chepurnov & E. Olafsson, 2005. Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquatic Microbial Ecology 39: 135–144.

    Article  Google Scholar 

  • De Troch, M., C. Cnudde, A. Willems, T. Moens & A. Vanreusel, 2010. Bacterial colonization on fecal pellets of harpacticoid copepods and on their diatom food. Microbial Ecology 60: 581–591.

    Article  PubMed  Google Scholar 

  • Deines, P., P. L. Bodelier & G. Eller, 2007a. Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems. Environmental Microbiology 9: 1126–1134.

    Article  CAS  PubMed  Google Scholar 

  • Deines, P., J. Grey, H.-H. Richnow & G. Eller, 2007b. Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid δ13C. Aquatic Microbial Ecology 46: 273–282.

    Article  Google Scholar 

  • Derycke, S., N. De Meester, A. Rigaux, S. Creer, H. Bik, W. K. Thomas & T. Moens, 2016. Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Molecular Ecology 25: 2093–2110.

    Article  CAS  PubMed  Google Scholar 

  • D’Hondt, A.-S., W. Stock, L. Blommaert, T. Moens & K. Sabbe, 2018. Nematodes stimulate biomass accumulation in a multispecies diatom biofilm. Marine Environmental Research 140: 78–89.

    Article  PubMed  CAS  Google Scholar 

  • Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia 13: 351–362.

    Article  PubMed  Google Scholar 

  • dos Santos, G. A., S. Derycke, V. G. Genevois, L. C. Coelho, M. T. Correia & T. Moens, 2009. Interactions among bacterial-feeding nematode species at different levels of food availability. Marine Biology 156: 629–640.

    Article  Google Scholar 

  • Duncan, A., & R. Z. Klekowski, 1975. Parameters of an energy budget. In Grodziński, W., Klekowski, R. Z., & A. Duncan (eds), Methods for Ecological Bioenergetics. IBP Handbook 24, Blackwell Scientific Publishing, Oxford, UK: 97–147.

  • Duncan, A., F. Schiemer & R. Z. Klekowski, 1974. A preliminary study of feeding rates on bacterial food by adult females of a benthic nematode, Plectus palustris De Man 1880. Polish Archives of Hydrobiology 21: 249–255.

    Google Scholar 

  • Elton, C. S., 1927. Animal Ecology. The Macmillan Company, London.

    Google Scholar 

  • Esser, M., 2006. Long-term dynamics of microbial biofilm communities of the river Rhine. PhD Thesis, Universität zu Köln, Germany.

  • Estifanos, T. K., W. Traunspurger & L. Peters, 2013. Selective feeding in nematodes: a stable isotope analysis of bacteria and algae as food sources for free-living nematodes. Nematology 15: 1–13.

    Article  Google Scholar 

  • Fonseca, G., D. Fontaneto & M. Di Domenico, 2018. Adressing biodiversity shortfalls in meiofauna. Journal of Experimental Marine Biology and Ecology 502: 26–38.

    Article  Google Scholar 

  • Fontaneto, D., A. M. Barbosa, H. Segers & M. Pautasso, 2012. The ‘rotiferologist’ effect and other global correlates of species richness in monogonont rotifers. Ecography 35: 174–182.

    Article  Google Scholar 

  • Fueser, H., N. Majdi, A. Haegerbaeumer, C. Pilger, H. Hachmeister, P. Greife, T. Huser & W. Traunspurger, 2018. Analyzing life-history traits and lipid storage using CARS microscopy for assessing effects of copper on the fitness of Caenorhabditis elegans. Ecotoxicology and Environmental Safety 156: 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Gansfort, B., J. Uthoff & W. Traunspurger, 2018. Interactions among competing nematode species affect population growth rates. Oecologia 187: 75–84.

    Article  PubMed  Google Scholar 

  • Garvey, J. E. & M. R. Whiles, 2017. Trophic Ecology. CRC Press, Boca Raton.

    Google Scholar 

  • Gaudes, A., I. Muñoz & T. Moens, 2013. Bottom-up effects on freshwater bacterivorous nematode populations: a microcosm approach. Hydrobiologia 707: 159–172.

    Article  CAS  Google Scholar 

  • Gaudes, A., S. Sabater, E. Vilalta & I. Muñoz, 2006. The nematode community in cyanobacterial biofilms in the river Llobregat, Spain. Nematology 8: 909–919.

    Article  Google Scholar 

  • Giere, O., 2019. Future trend lines in ecological meiobenthos research. In Giere, O. (ed.), Perspectives in Meiobenthology. Springer, New York: 37–49.

    Chapter  Google Scholar 

  • Gingold, R., T. Moens & A. Rocha-Olivares, 2013. Assessing the response of nematode communities to climate change-driven warming: a microcosm experiment. PLoS ONE 8: e66653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfinch, A. C. & K. R. Carman, 2000. Chironomid grazing on benthic microalgae in a Louisiana salt marsh. Estuaries 23: 536–547.

    Article  Google Scholar 

  • Gravel, D., C. Albouy & W. Thuiller, 2016. The meaning of functional trait composition of food webs for ecosystem functioning. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150268.

    Article  Google Scholar 

  • Guénard, G., P. Legendre & P. Peres-Neto, 2013. Phylogenetic eigenvector maps: a framework to model and predict species traits. Methods in Ecology and Evolution 4: 1120–1131.

    Article  Google Scholar 

  • Guilini, K., G. Veit-Koehler, M. De Troch, D. Van Gansbeke & A. Vanreusel, 2013. Latitudinal and temporal variability in the community structure and fatty acid composition of deep-sea nematodes in the Southern Ocean. Progress in Oceanography 110: 80–92.

    Article  Google Scholar 

  • Hägerbäumer, A., S. Höss, P. Heininger & W. Traunspurger, 2015. Experimental studies with nematodes in ecotoxicology: an overview. Journal of Nematology 47: 1–11.

    Google Scholar 

  • Heidemann, K., S. Scheu, L. Ruess & M. Maraun, 2011. Molecular detection of nematode predation and scavenging in oribatid mites: laboratory and field experiments. Soil Biology and Biochemistry 43: 2229–2236.

    Article  CAS  Google Scholar 

  • Herman, P. M. J. & G. Vranken, 1988. Studies of the life-history and energetics of marine and brackish-water nematodes. II. Production, respiration and food uptake by Monhystera disjuncta. Oecologia 77: 457–463.

    Article  PubMed  Google Scholar 

  • Höckelmann, C., T. Moens & F. Jüttner, 2004. Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes. Limnology and Oceanography 49: 1809–1819.

    Article  Google Scholar 

  • Hohberg, K. & W. Traunspurger, 2005. Predator-prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biology and Fertility of Soils 41: 419–427.

    Article  Google Scholar 

  • Hordijk, C. A., I. Burgers, G. J. Phylipsen & T. E. Cappenberg, 1990. Trace determination of lower volatile fatty acids in sediments by gas chromatography with chemically bonded FFAP columns. Journal of Chromatography A 511: 317–323.

    Article  CAS  Google Scholar 

  • Hortal, J., F. de Bello, J. A. F. Diniz-Filho, T. M. Lewinsohn, J. M. Lobo & R. J. Ladle, 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Reviews of Ecology Evolution and Systematics 46: 523–549.

    Article  Google Scholar 

  • Hubas, C., C. Sachidhanandam, H. Rybarczyk, H. V. Lubarsky, A. Rigaux, T. Moens & D. M. Paterson, 2010. Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Marine Ecology Progress Series 419: 85–94.

    Article  Google Scholar 

  • Jakob, E. M., S. D. Marshall & G. W. Uetz, 1996. Estimating fitness: a comparison of body condition indices. Oikos 77: 61–67.

    Article  Google Scholar 

  • Jardim, L., L. M. Bini, J. A. F. Diniz-Filho & F. Villalobos, 2016. Challenging the Raunkiaeran shortfall and the consequences of using imputed databases. BioRxiv. https://doi.org/10.1101/081778.

    Article  Google Scholar 

  • Jehmlich, N., C. Vogt, V. Lünsmann, H. H. Richnow & M. von Bergen, 2016. Protein-SIP in environmental studies. Current Opinion in Biotechnology 41: 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S. N., D. B. Read & P. J. Gregory, 2004. Tracking larval insect movement within soil using high resolution X-ray microtomography. Ecological Entomology 29: 117–122.

    Article  Google Scholar 

  • Kathol, M., H. Norf, H. Arndt & M. Weitere, 2009. Effects of temperature increase on the grazing of planktonic bacteria by biofilm-dwelling consumers. Aquatic Microbial Ecology 55: 65–79.

    Article  Google Scholar 

  • Kazemi-Dinan, A., F. Schroeder, L. Peters, N. Majdi & W. Traunspurger, 2014. The effect of trophic state and depth on periphytic nematode communities in lakes. Limnologica 44: 49–57.

    Article  Google Scholar 

  • King, R. A., D. S. Read, M. Traugott & W. O. C. Symondson, 2008. Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17: 947–963.

    Article  CAS  PubMed  Google Scholar 

  • Kohzu, A., C. Kato, T. Iwata, D. Kishi, M. Murakami, S. Nakano & E. Wada, 2004. Stream food web fueled by methane-derived carbon. Aquatic Microbial Ecology 36: 189–194.

    Article  Google Scholar 

  • Kreuzinger-Janik, B., S. Kruscha, N. Majdi & W. Traunspurger, 2018. Flatworms like it round: nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Iijima 1884). Hydrobiologia 819: 231–242.

    Article  Google Scholar 

  • Kreuzinger-Janik, B., H. Brüchner-Hüttemann & W. Traunspurger, 2019. Effect of prey size and structural complexity on the functional response in a nematode-nematode system. Scientific Reports 9: 5696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kydd, J., H. Rajakaruna, E. Briski & S. Bailey, 2018. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size. Journal of Sea Research 133: 2–10.

    Article  Google Scholar 

  • Langel, R. & J. Dyckmans, 2014. Combined 13C and 15 N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Communications in Mass Spectrometry 28: 1019–1022.

    Article  CAS  PubMed  Google Scholar 

  • Leduc, D. & P. K. Probert, 2009. The effect of bacterivorous nematodes on detritus in- corporation by macrofaunal detritivores: a study using stable isotope and fatty acid analyses. Journal of Experimental Marine Biology and Ecology 371: 130–139.

    Article  CAS  Google Scholar 

  • Liu, Y., N. Majdi, M. Tackx, A. Dauta, M. Gérino, F. Julien & E. Buffan-Dubau, 2015. Short-term effects of nutrient enrichment on river biofilm: NO3- uptake rate and response of meiofauna. Hydrobiologia 744: 165–175.

    Article  CAS  Google Scholar 

  • Liu, Y., K. Dedieu, J.-M. Sánchez-Pérez, B. Montuelle, E. Buffan-Dubau, F. Julien, F. Azémar, S. Sauvage, P. Marmonier & J. Yao, 2017. Role of biodiversity in the biogeochemical processes at the water-sediment interface of macroporous river bed: an experimental approach. Ecological Engineering 103: 385–393.

    Article  Google Scholar 

  • Lubzens, E., A. Marko & A. Tietz, 1985. De novo synthesis of fatty acids in the rotifer, Brachionus plicatilis. Aquaculture 47: 27–37.

    Article  CAS  Google Scholar 

  • Lucas, A. & J. J. Watson, 2002. Bioenergetics of aquatic animals. CRC Press, Boca Raton: 169.

    Book  Google Scholar 

  • Lueders, T., B. Wagner, P. Claus & M. W. Friedrich, 2004. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environmental Microbiology 6: 60–72.

    Article  CAS  PubMed  Google Scholar 

  • Lueders, T., M. G. Dumont, L. Bradford & M. Manefield, 2016. RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes. Current Opinion in Biotechnology 41: 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Maghsoud, H., A. Weiss, J. P. S. Smith, M. K. Litvaitis & S. R. Fegley, 2014. Diagnostic PCR can be used to illuminate meiofaunal diets and trophic relationships. Invertebrate Biology 133: 121–127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maboreke, H., V. Bartel, R. Seiml-Buchinger & L. Ruess, 2018. Micro-food web structure shapes rhizosphere microbial communities and growth in Oak. Diversity 10: 15.

    Article  CAS  Google Scholar 

  • Majdi, N. & W. Traunspurger, 2015. Free-living nematodes in the freshwater food web: a review. Journal of Nematology 47: 28–44.

    PubMed  PubMed Central  Google Scholar 

  • Majdi, N. & W. Traunspurger, 2017. Leaf fall affects the isotopic niches of meiofauna and macrofauna in a stream food web. Food Webs 10: 5–14.

    Article  Google Scholar 

  • Majdi, N., B. Mialet, S. Boyer, M. Tackx, J. Leflaive, S. Boulêtreau, L. Ten-Hage, F. Julien, R. Fernandez & E. Buffan-Dubau, 2012a. The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance. Freshwater Science 31: 38–50.

    Article  Google Scholar 

  • Majdi, N., M. Tackx & E. Buffan-Dubau, 2012b. Trophic positionning and microphytobenthic carbon uptake of biofilm-dwelling meiofauna in a temperate river. Freshwater Biology 57: 1180–1190.

    Article  CAS  Google Scholar 

  • Majdi, N., M. Tackx, W. Traunspurger & E. Buffan-Dubau, 2012c. Feeding of biofilm-dwelling nematodes examined using HPLC-analysis of gut pigment contents. Hydrobiologia 680: 219–232.

    Article  CAS  Google Scholar 

  • Majdi, N., I. Threis & W. Traunspurger, 2016. It’s the little things that count: meiofaunal density and production in the sediment of two headwater streams: Meiofauna in Streams. Limnology and Oceanography 62: 151–163.

    Article  Google Scholar 

  • Majdi, N., N. Hette-Tronquart, E. Auclair, A. Bec, T. Chouvelon, B. Cognie, M. Danger, P. Decottignies, A. Dessier, C. Desvilettes, S. Dubois, C. Dupuy, C. Fritsch, C. Gaucherel, M. Hedde, F. Jabot, S. Lefebvre, M. P. Marzloff, B. Pey, N. Peyrard, T. Powolny, R. Sabbadin, E. Thébault & M.-E. Perga, 2018. There’s no harm in having too much: a comprehensive toolbox of methods in trophic ecology. Food Webs 17: e00100.

    Article  Google Scholar 

  • Majdi, N., W. Traunspurger, H. Fueser, B. Gansfort, P. Laffaille & A. Maire, 2019. Effects of a broad range of experimental temperatures on the population growth and body-size of five species of free-living nematodes. Journal of Thermal Biology 80: 21–36.

    Article  PubMed  Google Scholar 

  • Malte, C. L., S. Nørgaard & T. Wang, 2016. Closed system respirometry may underestimate tissue gas exchange and bias the respiratory exchange ratio (RER). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 192: 17–27.

    Article  CAS  Google Scholar 

  • Mathieu, M., J. Leflaive, L. Ten-Hage, R. de Wit & E. Buffan-Dubau, 2007. Free-living nematodes affect oxygen turnover of artificial diatom biofilms. Aquatic Microbial Ecology 49: 281–291.

    Article  Google Scholar 

  • Melody, C., B. Griffiths, J. Dyckmans & O. Schmidt, 2016. Stable isotope analysis (δ13C and δ15 N) of soil nematodes from four feeding groups. PeerJ 4: e2372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mialet, B., N. Majdi, M. Tackx, F. Azémar & E. Buffan-Dubau, 2013. Selective feeding of Bdelloid rotifers in river biofilms. PLoS One 8: e75352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middelburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens & C. H. R. Heip, 2000. The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45: 1224–1234.

    Article  CAS  Google Scholar 

  • Moens, T. & M. Vincx, 1997. Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the UK 77: 211–227.

    Article  Google Scholar 

  • Moens, T., G. A. P. dos Santos, F. Thompson, J. Swings, V. Fonsêca-Genevois, M. Vincx & I. De Mesel, 2005. Do nematode mucus secretions affect bacterial growth? Aquatic Microbial Ecology 40: 77–83.

    Article  Google Scholar 

  • Moens, T., A.-M. Vafeiadou, E. De Geyter, P. Vanormelingen, K. Sabbe & M. De Troch, 2013. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. Journal of Sea Research 92: 125–133.

    Article  Google Scholar 

  • Mohr, S. & R. Adrian, 2000. Functional responses of the rotifers Brachionus calyciflorus and Brachionus rubens feeding on armored and unarmored ciliates. Limnology and Oceanography 45: 1175–1179.

    Article  Google Scholar 

  • Musat, N., F. Musat, P. K. Weber & J. Pett-Ridge, 2016. Tracking microbial interactions with NanoSIMS. Current Opinion in Biotechnology 41: 114–121.

    Article  CAS  PubMed  Google Scholar 

  • Muschiol, D. & W. Traunspurger, 2007. Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp and Poikilolaimus sp from chemoautotrophic Movile Cave, Romania. Nematology 9: 271–284.

    Article  Google Scholar 

  • Muschiol, D., M. Markovic, I. Threis & W. Traunspurger, 2008. Predatory copepods can control nematode populations: a functional-response experiment with Eucyclops subterraneus and bacterivorous nematodes. Fundamental and Applied Limnology 172: 317–324.

    Article  CAS  Google Scholar 

  • Nascimento, F. J. A., J. Näslund & R. Elmgren, 2012. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnology and Oceanography 57: 338–346.

    Article  CAS  Google Scholar 

  • Nejstgaard, J. C., M. E. Frischer, C. L. Raule, R. Gruebel, K. E. Kohlberg & P. G. Verity, 2003. Molecular detection of algal prey in copepod guts and fecal pellets. Limnology and Oceanography: Methods 1: 29–38.

    Google Scholar 

  • Nejstgaard, J. C., M. E. Frischer, P. Simonelli, C. Troedsson, M. Brakel, F. Adiyaman, A. F. Sazhin & L. F. Artigas, 2008. Quantitative PCR to estimate copepod feeding. Marine Biology 153: 565–577.

    Article  CAS  Google Scholar 

  • Neu, T. R. & J. R. Lawrence, 2015. Innovative techniques, sensors, and approaches for imaging biofilms at different scales. Trends in Microbiology 23: 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld, J. D., M. Wagner & J. C. Murrell, 2007. Who eats what, where and when? Isotope-labelling experiments are coming of age. The ISME Journal 1: 103.

    Article  CAS  PubMed  Google Scholar 

  • Neury-Ormanni, J., J. Vedrenne, M. Wagner, G. Jan & S. Morin, 2019. Micro-meiofauna morphofunctional traits linked to trophic activity. Hydrobiologia. https://doi.org/10.1007/s10750-019-04120-0.

    Article  Google Scholar 

  • Pausch, J., S. Hofmann, A. Scharroba, Y. Kuzyakov & L. Ruess, 2016. Fluxes of root-derived carbon into the nematode micro-food web of an arable soil. Food Webs 9: 32–38.

    Article  Google Scholar 

  • Perlmutter, D. G. & J. L. Meyer, 1991. The impact of a stream-dwelling harpacticoid copepod upon detritally associated bacteria. Ecology 72: 2170–2180.

    Article  Google Scholar 

  • Peters, L. & W. Traunspurger, 2005. Species distribution of free-living nematodes and other meiofauna in littoral periphyton communities of lakes. Nematology 7: 267–280.

    Article  Google Scholar 

  • Peters, L., H. Hillebrand & W. Traunspurger, 2007. Spatial variation of grazer effects on epilithic meiofauna and algae. Journal of the North American Benthological Society 26: 78–91.

    Article  Google Scholar 

  • Ptatscheck, C., B. Kreuzinger-Janik, H. Putzki & W. Traunspurger, 2015. Insights into the importance of nematode prey for chironomid larvae. Hydrobiologia 757: 143–153.

    Article  Google Scholar 

  • Ptatscheck, C., H. Putzki & W. Traunspurger, 2017. Impact of deposit-feeding chironomid larvae (Chironomus riparius) on meiofauna and protozoans. Freshwater Science 36: 796–804.

    Article  Google Scholar 

  • Radajewski, S., P. Ineson, N. R. Parekh & J. C. Murrell, 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403: 646.

    Article  CAS  PubMed  Google Scholar 

  • Raubenheimer, D., S. J. Simpson & D. Mayntz, 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Functional Ecology 23: 4–16.

    Article  Google Scholar 

  • Reiss, J. & J. M. Schmid-Araya, 2008. Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshwater Biology 53: 652–658.

    Article  Google Scholar 

  • Reiss, J. & J. M. Schmid-Araya, 2011. Feeding response of a benthic copepod to ciliate prey type, prey concentration and habitat complexity. Freshwater Biology 56: 1519–1530.

    Article  Google Scholar 

  • Riemann, F. & E. Helmke, 2002. Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Marine Ecology 23: 93–113.

    Article  CAS  Google Scholar 

  • Ristau, K., M. Faupel & W. Traunspurger, 2012. The effects of nutrient enrichment on a freshwater meiofaunal assemblage. Freshwater Biology 57: 824–834.

    Article  CAS  Google Scholar 

  • Ristau, K., N. Spann & W. Traunspurger, 2015. Species and trait compositions of freshwater nematodes as indicative descriptors of lake eutrophication. Ecological Indicators 53: 196–205.

    Article  Google Scholar 

  • Robertson, J. R. & G. W. Salt, 1981. Responses in growth mortality, and reproduction to variable food levels by the rotifer, Asplanchna girodi. Ecology 62: 1585–1596.

    Article  Google Scholar 

  • Rossel, S. & P. Martínez Arbizu, 2018. Automatic specimen identification of Harpacticoids (Crustacea:Copepoda) using Random Forest and MALDI-TOF mass spectra, including a post hoc test for false positive discovery. Methods in Ecology and Evolution 9: 1421–1434.

    Article  Google Scholar 

  • Rossel, S. & P. Martínez Arbizu, 2019. Revealing higher than expected diversity of Harpacticoida (Crustacea:Copepoda) in the North Sea using MALDI-TOF MS and molecular barcoding. Scientific Reports 9: 9182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein, M. & P. Götz, 1968. Biosynthesis of fatty acids in the free-living nematode, Turbatrix aceti. Archives of Biochemistry and Biophysics 126: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, D., 1976. Inference and missing data. Biometrika 63: 581–592.

    Article  Google Scholar 

  • Ruiz, T., A. Bec, M. Danger, A.-M. Koussoroplis, J.-P. Aguer, J.-P. Morel & N. Morel-Desrosiers, 2018. A microcalorimetric approach for investigating stoichiometric constraints on the standard metabolic rate of a small invertebrate. Ecology Letters 21: 1714–1722.

    Article  PubMed  Google Scholar 

  • Rzeznik-Orignac, J., A. Puisay, E. Derelle, E. Peru, N. Le Bris & P. E. Galand, 2018. Co-occurring nematodes and bacteria in submarine canyon sediments. PeerJ 6: e5396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenck, J. & D. Fontaneto, 2019. Biodiversity analyses in freshwater meiofauna through DNA sequence data. Hydrobiologia. https://doi.org/10.1007/s10750-019-04067-2.

    Article  Google Scholar 

  • Schiemer, F., 1982. Food dependence and energetics of freeliving Nematodes. Oecologia 54: 108–121.

    Article  CAS  PubMed  Google Scholar 

  • Schiemer, F. & A. Duncan, 1974. The oxygen consumption of a freshwater benthic nematode, Tobrilus gracilis (Bastian). Oecologia 15: 121–126.

    Article  PubMed  Google Scholar 

  • Schiemer, F., A. Duncan & R. Z. Klekowski, 1980. A bioenergetic study of a benthic nematode, Plectus palustris de Man 1880, throughout its life cycle. Oecologia 44: 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, P. E. & J. M. Schmid-Araya, 1997. Predation on meiobenthic assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel stream. Freshwater Biology 38: 67–91.

    Article  Google Scholar 

  • Schmid, P. E. & J. M. Schmid-Araya, 2002. Trophic relationships in temporary and permanent freshwater meiofauna. In Rundle, S. D., A. L. Robertson & J. M. Schmid-Araya (eds), Freshwater meiofauna biology and ecology. Backhuys Publishers, Leiden: 295–320.

    Google Scholar 

  • Schmid-Araya, J. M. & P. E. Schmid, 1995. Preliminary results on diet of stream invertebrate species: the meiofaunal assemblages. Jahresbericht der Biologischen Station Lunz 15: 23–31.

    Google Scholar 

  • Schmid-Araya, J. M., A. G. Hildrew, A. Robertson, P. E. Schmid & J. Winterbottom, 2002a. The importance of meiofauna in food webs: evidence from an acid stream. Ecology 83: 1271–1285.

    Article  Google Scholar 

  • Schmid-Araya, J. M., P. E. Schmid, A. Robertson, J. Winterbottom, C. Gjerløv & A. G. Hildrew, 2002b. Connectance in stream food webs. Journal of Animal Ecology 71: 1056–1062.

    Article  Google Scholar 

  • Schmid-Araya, J. M., P. E. Schmid, S. P. Tod & G. F. Esteban, 2016. Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97: 3099–3109.

    Article  PubMed  Google Scholar 

  • Schroeder, F., D. Muschiol & W. Traunspurger, 2010. Fluctuating food availability may permit coexistence in bacterivorous nematodes. Fundamental and Applied Limnology 178: 59–66.

    Article  Google Scholar 

  • Schroeder, F., W. Traunspurger, K. Pettersson & L. Peters, 2012. Temporal changes in periphytic meiofauna in lakes of different trophic states. Journal of Limnology 71: 216–227.

    Article  Google Scholar 

  • Sieriebriennikov, B., H. Ferris & R. G. de Goede, 2014. NINJA: an automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology 61: 90–93.

    Article  Google Scholar 

  • Taylor, W. D., 1980. Observations on the feeding and growth of the predacious oligochaete Chaetogaster langi on ciliated protozoa. Transactions of the American Microscopical Society 99: 360–368.

    Article  Google Scholar 

  • Traunspurger, W., 1997. Bathymetric, seasonal and vertical distribution of feeding-types of nematodes in an oligotrophic lake. Vie et Milieu 47: 1–7.

    Google Scholar 

  • Traunspurger, W., M. Bergtold & W. Goedkoop, 1997. The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112: 118–122.

    Article  PubMed  Google Scholar 

  • Traunspurger, W., S. Höss, A. Witthöft-Mühlmann, M. Wessels & H. Güde, 2012. Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundamental and Applied Limnology 180: 233–248.

    Article  CAS  Google Scholar 

  • Traunspurger, W., B. Wilden & N. Majdi, 2019. An overview of meiofaunal and nematode distribution in lake ecosystems differing in their trophic state. Hydrobiologia. https://doi.org/10.1007/s10750-019-04092-1.

    Article  Google Scholar 

  • Vafeiadou, A.-M., P. Materatski, H. Adão, M. De Troch & T. Moens, 2014. Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11: 4001–4014.

    Article  Google Scholar 

  • Van Gaever, S., L. Moodley, F. Pasotti, M. Houtekamer, J. J. Middelburg, R. Danovaro & A. Vanreusel, 2009. Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Marine Biology 156: 1289–1296.

    Article  CAS  Google Scholar 

  • Van Oevelen, D., L. Moodley, K. Soetaert & J. J. Middelburg, 2006. The trophic significance of bacterial carbon in a marine intertidal sediment: results of an in situ stable isotope labeling study. Limnology and Oceanography 51: 2349–2359.

    Article  Google Scholar 

  • Vecchi, M., I. L. Newton, M. Cesari, L. Rebecchi & R. Guidetti, 2018. The microbial community of tardigrades: environmental influence and species specificity of microbiome structure and composition. Microbial Ecology 76: 467–481.

    Article  CAS  PubMed  Google Scholar 

  • Vestheim, H., B. Edvardsen & S. Kaartvedt, 2005. Assessing feeding of a carnivorous copepod using species-specific PCR. Marine Biology 147: 381–385.

    Article  CAS  Google Scholar 

  • Vidakovic, J., G. Palijan & D. Cerba, 2011. Relationship between nematode community and biomass and composition of periphyton developing on artificial substrates in floodplain lake. Polish Journal of Ecology 59: 577–588.

    Google Scholar 

  • Volland, J.-M., A. Schintlmeister, H. Zambalos, S. Reipert, P. Mozetič, S. Espada-Hinojosa, V. Turk, M. Wagner & M. Bright, 2018. NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host. The ISME Journal 12: 714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsberg, G. E. & T. C. Hoffman, 2005. Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. Journal of Experimental Biology 208: 1035–1043.

    Article  PubMed  Google Scholar 

  • Watts, J. L. & J. Browse, 1999. Isolation and characterization of a Δ5-fatty acid desaturase from caenorhabditis elegans. Archives of Biochemistry and Biophysics 362: 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Weber, S. & W. Traunspurger, 2013. Food choice of two bacteria-feeding nematode species dependent on food source, food density and interspecific competition. Nematology 15: 291–301.

    Article  Google Scholar 

  • Wegener, G., M. Y. Kellermann & M. Elvert, 2016. Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Current Opinion in Biotechnology 41: 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Weitere, M., M. Erken, N. Majdi, H. Arndt, H. Norf, M. Reinshagen, W. Traunspurger, A. Walterscheid & J. K. Wey, 2018. The food web perspective on aquatic biofilms. Ecological Monographs 88: 543–559.

    Article  Google Scholar 

  • Wieser, W., 1953. Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nernatode. Arkiv für Zoologie 439–484.

  • Wilden, B., N. Majdi, U. Kuhlicke, T. R. Neu & W. Traunspurger, 2019. Flatworm mucus as the base of a food web. BMC Ecology 19: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Witte, U., F. Wenzhöfer, S. Sommer, A. Boetius, P. Heinz, N. Aberle, M. Sand, A. Cremer, W.-R. Abraham, B. B. Jørgensen & O. Pfannkuche, 2003. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424: 763–766.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., T. Campinas Bezerra, D. Van Gansbeke & T. Moens, 2019. Natural stable isotope ratios and fatty acid profiles of estuarine tidal flat nematodes reveal very limited niche overlap among co-occurring species. PeerJ 7: e7864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates, G. W., T. d Bongers, R. G. M. De Goede, D. W. Freckman, & S. S. Georgieva, 1993. Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331.

Download references

Acknowledgements

We are grateful to Diego Fontaneto and Sidinei Magela Thomaz for their support and confidence allowing us to compile a special volume on freshwater meiofauna. We thank Peter E. Schmid and two anonymous reviewers for their helpful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Majdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Nabil Majdi, Jenny M. Schmid-Araya & Walter Traunspurger/Patterns and Processes of Meiofauna in Freshwater Ecosystems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majdi, N., Schmid-Araya, J.M. & Traunspurger, W. Examining the diet of meiofauna: a critical review of methodologies. Hydrobiologia 847, 2737–2754 (2020). https://doi.org/10.1007/s10750-019-04150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04150-8

Keywords

Navigation