Skip to main content

Advertisement

Log in

Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the main structuring forces driving epiphytic algae dynamics with wind disturbances and zooplankton grazing acting as potential stressors by inducing a natural 60-day epiphyton summer succession. We cleaned macrophytes in the subtropical shallow Mangueira Lake, southern Brazil, using soft sponges and sampled them randomly at short-term intervals. Simultaneously, we sampled and classified zooplankton from the littoral zone according to their particle ingestion size. Disturbance by wind was the main factor driving the epiphyton succession. Tightly attached diatoms were well adapted to the system’s high mean wind velocity (15 m s−1), whereas low wind velocity (<7 m s−1) reduced community diversity. Summer storms (46.7 mm of precipitation; 29.5 m s−1 wind velocity) caused phosphorus input and favored prostrate diatoms. Epiphyton was very productive (8028.8 mg C m−2 h−1), consistent with a heterogeneous community. Small rotifers and ciliates were abundant in the water column during the study. Our data indicate that rotifers as well as other zooplankton grazed on epiphyton, due to the positive correlation between algal diversity and rotifer abundance as well as between diatom and zooplankton biomasses, whereas Copepods and Cladocerans followed large motile diatoms in abundance. We conclude that epiphyton is an important food source for zooplankton in Mangueira Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ács, E. & K. T. Kiss, 1993. Effects of the water discharge on periphyton abundance and diversity in a large river (River Danube, Hungary). Hydrobiologia 249: 125–133.

    Article  Google Scholar 

  • Ács, E., A. K. Borsodi, K. Kropfl, P. Vladar & G. Zarai, 2007. Changes in the algal composition, bacterial metabolic activity and element content of biofilms developed on artificial substrata in the early phase of colonization. Acta Bot Croat 66: 89–100.

    Google Scholar 

  • Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjäev (Estonia). Hydrobiologia 584: 167–177.

    Article  Google Scholar 

  • Agasild, H., P. Zingel, K. Karus, K. Kangro, J. Salujõe & T. Nõges, 2013. Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshwater Biology 58: 183–191.

    Article  Google Scholar 

  • American Public Health Association (APHA), 2005. Standard methods for examination of water and wastewater, Washington (DC).

  • Ask, J., J. Karlsson, L. Persson, P. Ask, P. Byström & M. Jansson, 2009. Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnology and Oceanography 54: 2034–2040.

    Article  Google Scholar 

  • Berthon, V., A. Bouchez & F. Rimet, 2011. Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case of study of rivers in south-eastern France. Hydrobiologia 673: 259–271.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Elsevier, San Diego: 31–56.

    Chapter  Google Scholar 

  • Blukacz, E. A., W. G. Sprules, B. J. Shuter & J. P. Richards, 2010. Evaluating the effect of wind-driven patchiness on trophic interactions between zooplankton and phytoplankton. Limnology and Oceanography 55: 1590–1600.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurosawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Brothers, S., Y. Vadeboncoeur & P. Sibley, 2016. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems. Global Change Biology. doi:10.1111/gcb.13306.

    PubMed  Google Scholar 

  • Bundy, M. H., H. A. Vanderploeg, P. J. Lavrentyev & P. A. Kovalcilk, 2005. The importance of microzooplankton versus phytoplankton to copepod populations during late winter and early spring in Lake Michigan. Canadian Journal of Fish and Aquatic Sciences 62: 2371–2385.

    Article  CAS  Google Scholar 

  • Burkholder, J. M. & R. G. Wetzel, 1989. Epiphytic microalgae on natural substrata in a hard water lake: seasonal dynamics of community structure, biomass and ATP content. Archives of Hydrobiology 83: 1–56.

    Google Scholar 

  • Cantonati, M. & R. L. Lowe, 2014. Lake benthic algae: toward an understanding of their ecology. Freshwater Science 33: 475–486.

    Article  Google Scholar 

  • Cardoso, L. S. & D. Motta Marques, 2004. Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake – South of Brazil) and its relationship to hydrodynamic aspects. Hydrobiologia 518: 123–134.

    Article  Google Scholar 

  • Cardoso, L. S. & D. Motta Marques, 2009. Hydrodynamics-driven plankton community in a shallow lake. Aquatic Ecology 43: 73–84.

    Article  Google Scholar 

  • Cardoso, L. S., C. R. Fragoso Jr., R. S. Souza & D. Motta Marques, 2012. Hydrodynamic control of plankton spatial and temporal heterogeneity in subtropical shallow lakes. In Schulz, H. E., A. L. A. Simões & R. J. Lobosco (eds), Hydrodynamics-Natural Water Bodie. Intech Open Access Publisher, Rijeka: 27–48.

    Google Scholar 

  • Carrias, J. F., J. P. Serre, T. S. Ngando & C. Amblard, 2002. Distribution, size, and bacterial colonization of pico- and nano-detrital organic particles (DOP) in two lakes of different trophic status. Limnology and Oceanography 47: 1202–1209.

    Article  CAS  Google Scholar 

  • Chen, C. C., J. E. Petersen & W. M. Kemp, 1997. Spatial and temporal scaling of periphyton growth on walls of estuarine mesocosms. Marine Ecology Pregress Series 155: 1–15.

    Article  Google Scholar 

  • Collos, Y., C. Descolas-Gros, M. Fontugne, A. Mortain-Bertand, M. J. Chrétiennot-Dinet & M. G. Frikha, 1992. Carbon and nitrogen dynamics during growth and degradation of phytoplankton under natural surface irradiance. Marine Biology 112: 491–496.

    Article  CAS  Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Crossetti, L. O., V. Becker, L. S. Cardoso, L. H. Rodrigues, L. S. Costa & D. Motta Marques, 2013. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43: 157–163.

    Article  Google Scholar 

  • Crossetti, L. O., F. Schneck, L. M. Freitas-Teixeira & D. Motta-Marques, 2014. The influence of environmental variables on spatial and temporal phytoplankton dissimilarity in a large shallow subtropical lake (Lake Mangueira, southern Brazil). Acta Limnologica Brasiliensia 26: 111–118.

    Google Scholar 

  • DeMott, W. R., R. D. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of Cyanobacteria. Limnology and Oceanography 46: 2054–2060.

    Article  Google Scholar 

  • DeNicola, D. M. & M. Kelly, 2014. Role of periphyton in ecological assessment of lakes. Freshwater Science 33: 619–638.

    Article  Google Scholar 

  • DeYoe, H. R., R. L. Lowe & J. C. Marks, 1992. Effects of nitrogen phosphorus on the endosymbiont load of Rhopalodia gibba and Epithemia turgida (Bacillariophyta). Journal of Phycology 28: 773–777.

    Article  CAS  Google Scholar 

  • Dumont, H. J., I. van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  • Elmoor-Loureiro, L. M. A. 1997. Manual de identificação de cladóceros límnicos do Brasil. Universa, Brasília. 156p.

    Google Scholar 

  • Faria, D. M., L. S. Cardoso & D. Motta-Marques, 2015. Periphytic diatoms exhibit a longitudinal gradient in a large subtropical shallow lake. Inland Waters 5: 117–124.

    Article  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2010. Periphytic algal community adaptative strategies in N and P enriched experiments in a tropical oligotrophic reservoir. Hydrobiologia 646: 295–309.

    Article  CAS  Google Scholar 

  • Ferragut, C. & D. C. Bicudo, 2012. Effect of N and P enrichment on periphytic algal community in a succession in a tropical oligotrophic reservoir. Limnology 13: 131–141.

    Article  Google Scholar 

  • Fragoso Jr., C. R., D. Motta Marques, T. F. Ferreira, J. H. Janse & E. H. van Nes, 2011. Potential effects of climate change and eutrophication on a large subtropical shallow lake. Environmental Modeling & Software 26: 1337–1348.

    Article  Google Scholar 

  • Fraterrigo, J. M. & J. A. Rusak, 2008. Disturbance-driven changes in the variability of ecological patterns and process. Ecology Letters 11: 756–770.

    Article  PubMed  Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollinger & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Baccillariophyceae). American Journal of Botany 69: 188–213.

    Article  Google Scholar 

  • Hutchinson, G. E., 1975. A treatise on Limnology. Limnological Botany, Interscience, New York.

    Google Scholar 

  • Ilmavirta, V., 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.

    Article  CAS  Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll – a from phytoplankton using ethanol as extraction solvent. Archiv fur Hydrobiologie 109: 445–454.

    CAS  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., M. S. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 91–114.

    Chapter  Google Scholar 

  • Kahlert, M., 1998. C:N: P ratios of freshwater benthic algae. Archives of Hydrobiology 51: 105–114.

    CAS  Google Scholar 

  • Kelly, M. G., L. King & B. NíChatháin, 2009. The conceptual basis of ecological-status assessments using diatoms. Biology and Environment: Proceedings of the Royal Irish Academy 109: 175–189

  • Kluijver, A., J. Ning, Z. Liu, E. Jeppensen, R. D. Gulati & J. J. Middelburg, 2015. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China. Limnology and Oceanography 60: 375–385.

    Article  Google Scholar 

  • Koste, W. 1978. Rotatoria. II Tafelband. Gebrüder Borntraeger, Berlin, Stuttgart. 234p.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of National American Benthological Society 19: 573–592.

    Article  Google Scholar 

  • Lange, K., A. Liess, J. J. Piggott, C. R. Townsend & C. D. Matthaei, 2011. Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwater Biology 56: 164–278.

    Article  Google Scholar 

  • Lavoie, I., P. J. Dillon & S. Campeau, 2009. The effect of excluding diatom and reducing taxonomic resolution on multivariate analysis and strem bioassessment. Ecological Indicators 9: 213–225.

    Article  Google Scholar 

  • Lengyel, E., J. Padisák & C. Stenger-Kovács, 2015. Establishment of equilibrium states and effect of disturbances on benthic diatom assemblages of the Torna-stream, Hungary. Hydrobiologia 750(1): 43–56.

    Article  CAS  Google Scholar 

  • Lewis Jr., W. M., 1976. Surface/Volume ratio: implications for phytoplankton morphology. Science 192: 885–887.

    Article  PubMed  Google Scholar 

  • Lewis Jr., W. M., 1978. Analysis of succession in a tropical phytoplankton community and a new measure of succession rate. The American Naturalist 122: 401–414.

    Article  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.

    Article  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentration. Freshwater Biology 51: 95–109.

    Article  CAS  Google Scholar 

  • Lowe, R. L., 1996. Periphyton patterns in lakes. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic. Elsevier, San Diego: 57–76.

    Chapter  Google Scholar 

  • Mariazzi, A., V. Conzonno, R. Echenique & H. Labollita, 1991. Physical and chemical characters, phytoplankton and primary production of Ezequiel Ramos Mexíareresvoir (Argentina). Hydrobiologia 209: 107–116.

    Article  CAS  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association, Scientific Publication, Ambleside.

    Google Scholar 

  • Malley, D. F., S. G. Lawrence, M. A. Maclver & W. J. Findlay, 1989. Range of variation in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American lakes. Canadian Technical Report of Fisheries and Aquatic Science 1666: 1–49.

    Google Scholar 

  • McCormick, P. V., M. B. O’Dell, R. B. E. Shuford II, J. G. Backus & W. C. Kennedy, 2001. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71: 119–139.

    Article  CAS  Google Scholar 

  • McCune, B. & M. J. Mefford, 2011. PC-ORD Multivariate Analysis of Ecological Data.Version 6.0 MjM Software. Gleneden Beach, Oregon.

  • Ogden, C. G. & R. H. Hedley, 1980. An atlas of freshwater testate amoebae. British Museum (Natural History), Oxford University, Oxford. 222p.

    Google Scholar 

  • Pappas, J. L. & E. F. Stoermer, 1996. Quantitative method for determining a representative algal sample count. Journal of Phycology 32: 693–696.

    Article  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The diatoms of United States. Academy of Natural Sciences, Philadelphia.

    Google Scholar 

  • Pellegrini, B. G. & C. Ferragut, 2012. Seasonal and successional variation of a periphytic algal community on natural substrate in a tropical mesotrophic reservoir. Acta Botânica Brasilica 26: 807–818.

    Google Scholar 

  • Peterson, C. G., 1987. Gut passage and insect grazer selectivity of lotic diatoms. Freshwater Biology 18: 455–460.

    Article  Google Scholar 

  • Peterson, C. G. & J. R. Stevenson, 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73: 1445–1461.

    Article  Google Scholar 

  • Pip, E. & G. G. C. Robinson, 1984. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin 18: 109–118.

    Article  Google Scholar 

  • Power, M., R. Lowe, P. Furey, J. Welter, M. Limm, J. Finlay, C. Bode, S. Chang, M. Goodrich & J. Sculley, 2009. Algal mats and insect emergence in rivers under Mediterranean climates: towards photogrammetric surveillance. Freshwater Biology. doi:10.1111/j.1365-2427.2008.02163.x.

    Google Scholar 

  • Rimet, F. & A. Bouchez, 2011. Use of diatom life-form and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecological Indicators 11: 489–499.

    Article  CAS  Google Scholar 

  • Rimet, F. & A. Bouchez, 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European Rivers. Knowledge and Management of Aquatic Ecosystems 406: 01.

    Article  Google Scholar 

  • Rimet, F., A. Bouchez & B. Montuelle, 2015. Benthic diatoms and phytoplankton to assess nutrients in a large lake: complementary of their use in Lake Geneva (France-Switzerland). Ecological Indicators 53: 231–239.

    Article  CAS  Google Scholar 

  • Rimet, F., A. Bouchez & K. Tapolczai, 2016. Spatial heterogeneity of littoral benthic in a large lake: monitoring implications. Hydrobiologia 771: 179–193.

    Article  Google Scholar 

  • Rodrigues, L. H. R., N. F. Fontoura & D. Motta Marques, 2014. Food web structure in a subtropical coastal lake: how phylogenetic constraints may affect species linkages. Marine & Freshwater Research 65: 453–465.

    Article  CAS  Google Scholar 

  • Rodrigues dos Santos, T. & C. Ferragut, 2013. The successional phases of a periphytic algal community in a shallow tropical reservoir during the dry and rainy seasons. Limnetica 32: 337–352.

    Google Scholar 

  • Rosa, L. M., L. S. Cardoso, L. O. Crossetti & D. Motta-Marques, 2016. Spatial and temporal variability of zooplankton–phytoplankton interactions in a large subtropical shallow lake dominated by non-toxic cyanobacteria. Marine and Freswater Research. doi:10.1071/MF15356.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 8: 71–76.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Schneck, F. & A. S. Mello, 2012. Hydrological disturbance overrides the effect of substratum roughness on the resistance and resilience of stream benhtic algae. Freshwater Biology 57: 1678–1688.

    Article  Google Scholar 

  • Seiji, D. & S. M. F. Gianesella-Galvão, 1991. Pigment chromatic adaptation in Cyclotella caspia Grunow (Bacillariophyta). Boletim do Instituto de Oceanografia 39: 123–130.

    Google Scholar 

  • Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.

    Article  PubMed  Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Jürgens, C. Jamieson, M. Boersma & K. Gocke, 2003. Daphinia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.

    Article  PubMed  Google Scholar 

  • Stevenson, R. J., 1996. An introduction to algal ecology in freshwater benthic habitats. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Elsevier, San Diego: 3–30.

    Chapter  Google Scholar 

  • Stoecker, D. K., D. E. Gustafson, C. T. Baier & M. M. D. Black, 2000. Primary production in the upper sea ice. Aquatic Microbial Ecology 21: 274–287.

    Article  Google Scholar 

  • Szlauer-Łukaszewska, A., 2007. Succession of periphyton developing on artificial substrate immersed in polysaprobic wastewater reservoir. Polish Journal of Envinronmental Studies 16: 753–762.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen des International Verein Limnologie 9: 1–38.

    Google Scholar 

  • Vadeboncoeur, Y., G. Peterson, M. J. V. Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients and light. Ecology 89: 2542–2552.

    Article  PubMed  Google Scholar 

  • Villar, C., L. Cabot & C. A. Bonetto, 1996. Macrophytic primary production and nutrient concentration in a deltic floodplain marsh of the Lower Paraná River. Hydrobiologia 330: 59–66.

    Article  CAS  Google Scholar 

  • Wall, D. & F. Briand, 1979. Response of lake phytoplankton communities to in situ manipulations of light intensity and colour. Journal of Plankton Research 1: 103–111.

    Article  Google Scholar 

  • Wallen, D. G. & G. H. Geen, 1971. Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae. Marine Biology 10: 34–43.

    Article  CAS  Google Scholar 

  • Wehr, J. D. & R. G. Sheath, 2003. Freshwater Algae of North America: Ecology and Classification. Elsevier, San Diego.

    Google Scholar 

  • Wetzel, R. G., 1990. Land-water interfaces: metabolic and limnological regulators. Verhandlungen des Internationalen Verein Limnologie 24: 6–24.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological analysis. Springer, New York.

    Book  Google Scholar 

  • Zhu, G., B. Qin & G. GAO, 2005. Direct evidence of phosphorus outbreak release from sediment to overlying water in large shallow lake cause by strong wind wave disturbance. Chinese Science Bulletin 50: 577–582.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CAPES (Coordination of Improvement of Higher Education Personnel) for the doctoral grant awarded to the first author. We are grateful to CNPq and Dr. Lucia H.R. Rodrigues for logistical support; the IPH (Hydraulic Research Institute, at UFRGS) technicians for sampling support; Gustavo F. Hartmann for zooplankton counting; and Professors Carla Ferragut, Lezilda C. Torgan, Lucia H.R. Rodrigues, and Luciane de O. Crossetti, and the two unknown referees for constructive comments on an earlier version of the manuscript. The English language was reviewed by Cary Collett.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denise Matias de Faria or Luciana de Souza Cardoso.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria, D.M., Cardoso, L.S. & da Motta Marques, D. Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces. Hydrobiologia 788, 267–280 (2017). https://doi.org/10.1007/s10750-016-3002-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3002-5

Keywords

Navigation